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Abstract

This thesis is about numerical methods for the regularization of large scale inverse
problems with sparsity constraints. Some new methods are proposed, and applied
to an inverse problem from Geotomography, the goal of which is to determine lati-
tudinal and longitudinal corrections to a spherically symmetric wave velocity model
of the Earth’s interior. The problem involves a very large, badly conditioned linear
system, whose solutions, expressed in an intricate coordinate system, can be sparsely
represented under the action of a wavelet transformation. The methods we develop
and analyze in this thesis are simple to implement, efficient and easy to parallelize on
large machines. In addition, the convergence analysis for the new algorithms assumes

minimal conditions on the linear systems they are applied to.

This thesis is organized as follows. After the introduction, we give in Chapter 2,
an overview of existing schemes for regularization with sparsity constraints, and we
introduce new material developed in the remainder of the thesis. Chapter 3 intro-
duces a new firm thresholding based scheme that overcomes some shortcomings of soft
thresholding; this scheme applies less penalty to the large coefficients of the iterates,
while producing solutions of comparable sparsity. Chapter 4 introduces two novel
methods based on an iteratively reweighted least squares strategy. These methods
are designed to minimize a new more general sparsity promoting functional, which
is especially useful for structured sparse problems, such as those encountered under
the action of a wavelet transform. Detailed convergence analysis is provided for these
two new algorithms. Chapter 5 discusses techniques that are useful for numerical
implementation, such as a fast implementation of a randomized low rank SVD ap-
proximation and matrix column norm estimations, useful for large badly conditioned
matrices. Finally, Chapter 6 presents the application, collecting ideas from the pre-

vious chapters and applying them to the inverse problem.

il
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Chapter 1

INTRODUCTION TO THE
THESIS

1.1 General Remarks

In this chapter, we offer some general remarks about the thesis. We conclude the
general discussion with a brief layout of the different chapters. We then describe the

mathematical notation used in the rest of the thesis.

We first describe the general idea. In this thesis, we discuss techniques (such as iter-
ative algorithms) useful for large inverse problems whose inversion step comes down
to the solution of a system of linear equations Az = b. This categorizes a large
number of inverse problems. We investigate iterative methods that can be used to
find solutions to such systems under the assumptions of large dimensions of A, noise
(in the right hand side b and possibly even in the matrix A) and ill conditioning of
A (characterized by the sharp dropoff of its singular values), particularly when the
system is under-determined (has more columns than rows). We also pay particular
attention to the case when the solution x can be sparsely represented in a properly

chosen basis. The application alluded to in this thesis comes from Geotomography. In



this application, we are interested in determining corrections to a spherically symmet-
ric seismic wave velocity model (one that varies only with depth). A more complete
model, which accounts for longitude and latitude as well as depth, would lead to
better understanding of the Earth’s interior structure. The inversion step for this
applications boils down to a large under-determined linear system such as the one
described above. The methods developed in this thesis, however, are applicable to a

wide variety of different problems.

There are several points that we make note of and discuss here. These form the core
properties of the methods we consider and analyze in the later chapters. First of all
the size of the matrix in our applications is generally very large. For our Seismic
Geotomography application, the dimensions of the matrix in the linear system are
roughly half a million rows by three million columns. Although the matrix is sparse,
the size of the matrix in a common sparse format is still over one hundred gigabytes.
This effectively means that operations with such a matrix are time consuming and
moreover, are only possible to perform on parallel machines with access to a large
amount of RAM. We remark here that when parallel codes are at play, simplicity and
transparency of the methods used is key to error-free implementation and customiza-
tion. There are many techniques from convex analysis that could be applied to the
problem at hand. We focus on relatively simple methods in this thesis because these
are preferred by many in large scale applications, which already have such a high
level of complication that many would prefer to avoid convoluted algorithms. The
methods we consider involve predominantly matrix vector operations which can be

readily parallelized.

Besides the large size of the systems, the data vector b almost always has noise. In
general b is derived from observations, and there is always an associated error or

uncertainty in the measurements. Thus, we can write: b = b + noise. The true



right hand side b is typically unknown; the matrix A itself is also frequently based
on computations which may contain approximations. Hence, given only the noisy
b and possibly noisy A (not the exact b and A), we cannot compute a solution Z
satisfying the system exactly. Instead we look for a solution x that in some useful way
approximates the true solution z. Typically, we look for a solution with a particular
low residual value || Az —b||2 based on some criterion, for example an a-priori estimate
v of the norm of the noise in b (v ~ ||noise||) or some x? value (which we discuss in

Chapter 6).

A third issue is that of ill-conditioning. Many matrices arising from physical inverse
problems are not well conditioned. This means that their singular values fall off
rapidly (usually in a non-linear fashion) and the ratio of the largest and smallest
singular values, called the condition number, is very large. There are different reasons
for this ill-conditioning depending on the application. In the case of our application
in Geotomography, the matrix columns correspond to locations within the Earth
(parametrized by a specific choice of coordinate system). Data are based on the
recordings of seismic waves observed by receivers on the surface after earthquakes;
the data is thus geographically limited, particularly by the location of seismic sensors.
The Earth is covered mostly by water and there are few sensors in these locations;
on the other hand many geological sensors are located in the United States and in
the territory of the former Soviet Union. This uneven spread of data sensors is often
responsible for ill-conditioning in matrices derived from such data. The result of ill
conditioning is that small changes in the original system produce large changes in the
solution. This effectively means that noise in the right hand side vector b can cause
the solution x to be very different from Z unless proper regularization methods are

used.



Another aspect of physical inverse problems is that data is typically quite limited.
That means that at the end we want to solve for more unknowns than there are
observations and the matrix A above would have more columns than rows. In such
a case, the matrix A has a non-trivial kernel, and there are infinitely many solutions
that have a suitably small residual value ||Az — b||. Thus, to obtain a single solution,
additional constraints must be set. This is again addressed by regularization; the
question reduces to a judicious choice of the constraints to introduce. The classical
constraint is that the two-norm of the solution be made small. This can be accom-
plished by minimizing ||Az — b||3 + A||z||3; it is well known that this leads to an
effective regularization method, which has the advantage that it can be implemented
in an arbitrary choice of orthonormal basis. When feasible, the solution is computed
in the orthonormal basis associated with the singular value decomposition (SVD) of
A: appropriate truncation leads to a solution that is sparse with respect to this basis.
In this thesis we make a particular focus on sparsity, but not with respect to the
SVD basis. This can be accomplished by replacing the two-norm penalty above by
a different penalty, for example, using the one-norm ||x||;. Sparsity is a popular and
useful constraint because in many instances the data can be sparsely represented in
some basis and the storage and manipulation of sparse data, especially that which is
high-dimensional, is both faster and easier. Imposing sparsity often also gets rid of
the small coefficients of the solution, a lot of which correspond to noise. Care must
be taken to choose the right regularization parameter (such as \) above to come up
with an acceptable solution. This often takes multiple runs and is a substantial time
constraint. The basis with respect to which we wish to impose sparsity has to be
picked carefully: the solution is typically not sparse in its “standard” basis. However,
it can often be expressed as a sparse solution under the action of some transform. In
this thesis and for our Geotomography application, we make use of the wavelet trans-

form. Wavelets are known for their compressive power and are used extensively in



imaging and other areas. Functions that consist of a combination of smoothly varying
large-scale features on which much more localized spiky features are superimposed,
typically can be approximated well by sparse wavelet expansions. As a simple exam-
ple consider the model below and its three representations with different numbers of

wavelet coefficients (Figure 1.1):

wwwwwwwwwwwwwww

Figure 1.1: Scaling and Wavelet Function. Original model with 135000 nonzero
coefficients, Reconstructions with 10000 and 160 wavelet coefficients.

These particular wavelets are able to represent the model quite accurately with just a
few (of the largest) coefficients. Since we expect the solutions to the inverse problem
to consist of such combinations of smooth features and spikes, it is plausible to look

for sparse solutions in the wavelet domain.

Another issue is the complexity of the underlying coordinate system. The vector
x expressed as a regular column vector is one dimensional. However the data it
represents is often inherently multi-dimensional. Consider for example the cubed
sphere coordinate system [38] which is used in our Geotomography application. It is
a way of representing data on a sphere such as the Earth, by projecting at each depth

on the surface of an inscribed cube:



Min=-6.7352
Max=8.5231

Figure 1.2: The Cubed Sphere (figure courtesy of Frederik Simons) and Sample Model
on a Cubed Sphere Grid

We comment on this in more detail in a later chapter, here we simply want to point
out that the solution x may indeed be a high dimensional vector in a complicated
coordinate system. When the Earth is gridded via such a system as the above, each
coordinate corresponds to a chunk identifier, a 2-d location on the outer surface of
the chunk, and a depth. From Figure 1.1 we can see that crossing chunk boundaries
correspond to big jumps in such a coordinate system. When looking for the solution
in such a coordinate system we may require special treatment at the boundaries.
Another aspect that calls for attention is the resolution power of the matrix. The
matrix is typically such that it can only resolve x in a certain range of the coordinate
system. That is, even if the expected true solution x to a physical problem contains
data in all chunks, the action of the matrix on x may be sensitive to only part of x,
and the information in A may just not be able to “reproduce” the other parts of x.
This occurs in our Geotomography application because some columns of the matrix
have very small norm and contain little information. Consider for example, the plot

of column sums below for a sample matrix:



Min=-2330.4381
Max=29.4386

Figure 1.3: Column Sums of the Matrix

From the above figure it is clear that we would not recover anything useful beyond
the above range. Hence, to obtain a meaningful solution, we would like to penalize
coordinates outside the colored range with a greater sparse penalty, that is we would
require those parts of the solution to be effectively zero or close to zero so that the

solution is constructed over the meaningful part.

Figure 1.1 shows that a model is to a large degree compressible with the wavelet basis
used there. However, there are multiple choices for wavelet transforms and perhaps
some parts of a more complicated model are represented best without wavelets at
all. For this reason, allowing an inversion algorithm to pick from a set of bases and
assign different weights to them in some kind of a linear combination is beneficial to

recovering complicated sparse solutions. We shall address this as well.

Without mentioning mathematical details, we have now made a list of issues and
desirable characteristics to consider for our methods which we recall in a brief list

below:

e The matrix A is very large, possibly inexact, underdetermined and ill condi-

tioned.



e The data vector b contains noise. Since the matrix A is ill conditioned, this can
lead to big differences between the obtained and noiseless solutions if regular-

ization is not used.

e In many instances, solutions can be sparsely represented when a suitable trans-

form is used.

e We must do multiple runs to determine the right penalty parameter. This can

take a lot of time.

e Not all parts of the solution are created equal. This can be due to the coordinate
system structure and the structure of the matrix. We need to be able to treat

different coefficients differently.

e There are many choices of transforms (for example many different types of
wavelet bases), we would like to use a combination of several and let the algo-

rithm decide on the combination rather than pick a single family.

This thesis is about regularization algorithms designed to address these issues. The
developed techniques are then applied to the inverse problem in the application. We
present numerical algorithms and techniques which can be readily coded and tested
as well as detailed analytical derivations. We also develop a numerical framework,
including various software, for tackling the large scale computations from the inverse
problem. We now briefly describe the layout of the thesis, counting this Introduction
as Chapter 1. At the end of this chapter is a section on the notation used in the thesis.
Chapter 2 gives a detailed mathematical introduction to regularization and sparsity,
existing classes of algorithms, and new ideas, that are presented in more detail in
the later chapters. Chapter 3 introduces a new algorithm called FIVTA, which is an
analogue of the FISTA method introduced in Chapter 2. This method uses a new

two-parameter thresholding function and is faster converging in practice, since it can



produce comparable solutions to FISTA with a higher value for the regularization
parameter. It is also less sensitive to the parameter value. Chapter 4 introduces
two new algorithms that can be used to minimize a newly proposed generalized func-
tional that allows us to treat different parts of the solution in different ways. The
algorithms are based on a reweighted least squares idea, which approximates the non-
smooth portion of the functional with a weighted two norm. Detailed convergence
analysis is exhibited for these two algorithms. Chapter 5 presents some numerical
comparisons between different methods and includes some interesting ideas for the
methods introduced in the previous chapters. It also presents a randomized approach
to approximating matrix column norms and a fast randomized low rank SVD approx-
imation algorithm. Finally, Chapter 6 discusses the application in Geotomography.
It describes the inverse problem and shows how the methods exhibited earlier can be
applied to its solution. The thesis is concluded by a few pages of summary and con-
cluding remarks along with references. An Appendix at the end of the thesis exhibits
the pseudocode for some of the algorithms mentioned in the thesis, particularly for

all the newly introduced methods.

1.2 Notation

We now introduce the notation relevant to this thesis. The set of all real numbers is
denoted by R, and the set of all nonnegative numbers is denoted by R, . By extension
of notation, we have that the set of all positive numbers is defined by R ;. The set of
all N-real vectors is denoted by RY. An element v € RY consists of N real numbers
stacked in a columnwise order. A matrix M € R™ represents an object of m
rows and /N columns. We use the capital N instead of the lowercase n because most

matrices we encounter in this thesis are underdetermined, which means that m < N.



For a differentiable real valued function f : R™*" — R and vectors x € R™,y €
R™ the vector V, f(x,y) € R™ is defined as (a%lf(:r, Y), %f(x, Y)s-- 5 f(z, y))
ny

This notation extends to functions of a single variable or of more than two variables.

A norm on V = RY or R™*¥ is a real valued function || - || : V — R that satisfies the

following criteria:
(1) ||z|| > 0 for all z € V, and ||z|| = 0 if and only if 2 = 0.
(2) [|Az|| = |Al||x|| for all z € V and X € R.
3) Il +yll < llal] + [Jyll for all 2,y € V.

In RY, we are particularly interested in the family of so called ¢,-norms for p > 1

(including p = 00). For any p > 1, the {,-norm of a vector x € R" is defined as

n 1/p
el = (zxz) |
k=1

The {y-norm is defined as: ||z|| = max; |x;|. Other norms are explicitly defined in
the thesis. We will make reference also to the so called 3 norm, which counts the
number of nonzero elements of a vector. We note later in this thesis that this is in
fact not a real norm and is a slight abuse of notation, yet we use this notation due
to its popularity. When the type of norm is not specified, as in ||y||, we assume the

use of the ¢ norm.

The space RY as an inner product space, with the inner product between two elements
N

r and y defined as (z,y) = 2Ty = Z x;y;. For example, the fo-norm is induced by
i=1

the Euclidean inner product, in the sense that ||z|| = y/(z,x) for any z € RY. For

any norm || || on RY, we can define the corresponding dual norm || ||, (with respect

10



to the Euclidean inner product): for any y € RY,

_ (y, 7)
Iyl =, dme

|||« is a well-defined real valued function on RY. Tt is well known that for any p > 0,
the dual norm of the ¢,-norm is the £,-norm, where ¢ satisfies p™* + ¢~' = 1 (and
g=o0if p=1).

Next we present some definitions and basic notion about real matrices. For any vector
v = (21,79,...,2y) € RV, D := Diag(x) = Diag(z1, s, ..., zy) € RV*V is defined

as:

x;, ifi=y,
0 otherwise.

We will make use of the singular value decomposition (SVD) of a real matrix A €
R™N: if A is of rank r, then there exist U € R™*" V € RY*" and ¥ € R™" such

that
(1) UTU =1, VTV =1,

(2) ¥ = Diag(oy,09,...,0,) € R¥* is a diagonal matrix with oy > oy > --+ >

o, > 0, and
(3) A=UxVT .

This is known as the economic form of the SVD [25]. For 1 < i < min{m, N}, the i-th
largest singular value of A is defined to be oy, with o; = 0 for j = r+1,..., min{m, N}

whenever » < min{m, N'}. For convenience the following notation is also used:

the largest singular value of A: Omax(A) = 071;

the smallest singular value of A: Omin(A) = Ominfm,N}-

11



The spectral norm of A is defined as ||A|ls = omax(A). The generalized inverse
of A € RN with SVD A = UXV?T, is defined as AT = VX 1UT (and 7! =

Diag(o;t, 05, ..., 0.1) € RF¥F),

By the matrix W we refer to a linear transform. We use W because in this thesis we
deal primarily with wavelet transforms, but the concepts apply equally well to other
linear transforms. By the notation AW ~! which appears frequently in the thesis,
we mean a product of two matrices A and W ™!, the latter representing an inverse
transform. Note that explicit knowledge of W or W~! is not required and is in fact
never used in this thesis; only the end result of the application of W, W~1 and

(W=HT to vectors is necessary.

We now describe what we mean by the minimization problems posed in this thesis.
Given functions f, g : R" — R, a minimization problem in the form min, f(z) s.t. g(x) =
0 refers to finding the minimum value of f(x) that can be attained among all z € R”
that satisfies g(z) = 0. We denote the optimal value by min,{f(z) : g(x) = 0}, and
the set of optimal solutions by arg min,{f(z) : g(z) = 0}. If the minimization prob-
lem is assumed to have only one optimal solution Z, we write T = argmin,{f(z) :
g(xz) = 0} (rather than & € argmin,{f(z) : g(z) = 0}). Sometimes, the uniqueness
of the optimal solution may depend on the properties of f. For instance, f may be a
function of a matrix and the uniqueness may depend on the properties of this matrix.
Additionally, we would be concerned mostly with unconstrained problems. For such
problems, the constraint g(z) = 0 does not exist. In many places in this thesis, we
would thus use the notation z = arg min,{f(z)}. By this statement, we mean that
we are interested to find a vector & which minimizes the function f(x). There might
be another minimizer § which produces the same value. That is, it may be possible
that f(z) = f(y) and  # y. By the statement, z = argmin,{f(x)}, we mean that
we are interested in finding a single minimizing vector z for f such that f(z) < f(y)

for all vectors y.

12



Chapter 2

REGULARIZATION, SPARSITY
AND ALGORITHMS

2.1 Overview

This chapter is a mathematical introduction into the rest of the thesis. We give an
introduction to regularization of linear systems, sparsity, and different schemes for
sparse regularization that can be used for large scale problems without strong condi-
tions on the matrix. Since there exist many available algorithms, we try to survey a
few different categories to which most of the existing methods can be assigned. We
also introduce the areas in which the later chapters of the thesis make new contribu-

tions.

2.2 Regularization

We now proceed to give a motivation for regularization, in the context of ill-conditioned
systems and noisy data vectors. We are particularly interested in systems that are

under-determined, as motivated in the introduction. When the system Ax = b is

13



under-determined, having more columns than rows, an infinite number of solutions
of the system exist. In this case, we wish to impose constraints on the solution to
pick a particular solution amongst many. Since A is not a square matrix, it only has
a generalized inverse as defined below. We start by introducing some notation. We
have A € R™*"™ with m < n and nonzero b € R™ which is noisy (equal to the noise-
less unknown b plus noise). We are interested in the case when A is ill-conditioned,

which means that the ratio between the largest and smallest non-zero singular values

(Omax(A)/omin(A)) is large.

We first consider the under-determined form of A, setting aside the issue of noise
in b. In this case, the system Ax = b has infinitely many solutions generically and
additional constraints must be imposed for uniqueness. The simplest and most clas-
sical constraint to put on the solution is the minimum of the /5-norm. Consider then,
solving the problem min, ||z||2 s.t. Az = b. It turns out that the solution is given in
terms of the generalized inverse A™b. Using the theory of Lagrange multipliers, we
define the Lagrangian:

L(z,y) = ||2|; + y" (Az — b),

where y is the vector of Lagrange Multipliers. Taking the gradient we get:
T L r
V.L(z,y)=2c+A'y=0 = x = —§A y.
We plug this into the constraint Az = b which, using A = UX V7 leads to:

1 1
A(—EATy) =b = —§UZ2UTy =b = Uly=-2%"2U"p,

14



so the pseudo-inverse solution we get is:

1 1 1
r = —§ATy = —§(UZVT)Ty = —§VZUTy

1
= —EVZ(—QE‘QUTI)) = Ve lUTh = A'b.

This simple and naive solution, however, can give rather meaningless results when
the system is not well behaved. When A is ill-conditioned, many singular values oy
will be very small, so that the matrix ¥~! which has diagonal terms é will have very
large entries. In this case the generalized inverse matrix, when computed with finite

precision arithmetic, will not give an accurate solution.

Next, we consider the issue of noise. We can also see that this naive solution x will
be very sensitive to errors in the right hand side vector b. This is apparent from
the covariance matrix of the solution, as we now show. For this, we suppose that
b = b + e where the noise vector e behaves like white noise. Its different entries are
then uncorrelated, each having mean 0 and standard deviation v. If in addition the

elements of b and e are uncorrelated we have:
Cov(e) = E[(e — Ele])(e — E(e))"] = Elee’] = V*I,

and:

Cov(b) = E[(b— E[b))(b — E(b))"] = Elee’] = v*I.

A property of covariance is that for a random vector v and a matrix A, Cov(Av) =
A Cov(v)AT. We may then derive the spectral norm (i.e., the largest singular value)

of the covariance matrix || Cov(z)||:

V2

Cov(z) = Cov(ATh) = AT Cov(b)(AT)" = 1*(ATA)T = || Cov(z)|]s = ——,

min

15



where o, is the smallest singular value of A. We see from the above that if A is
not well conditioned, the covariance matrix is likely to have very large elements, since
the smallest singular value of A will be small. This indicates that x = A"b is very

sensitive to data errors.

In the presence of noise when the true right hand side b is not known, we may not
even be able to find a solution to Az = b because the matrix and the right hand side
b (including the noise) may simply be incompatible (i.e. b ¢ Ran(A)) so that the
problem has no solution. Instead we generally try to minimize ||Az — b||3 (possibly
with additional constraints, as we will see below) and the generalized inverse can
also be used for this optimization problem. The function ||Az — b|[3 is convex and

differentiable, so the minimum satisfies:

VllAz —b|[3 =0 = 24T (Az —b) =0 = AT Az = A0,

In fact, a common choice of solution of AT Az = ATb would be directly through the

generalized inverse:

= (ATA)TATh = (VE2VHVSUTH = A, (2.2.1)

because of all the solutions to AT Ax = ATb, A*b has the smallest f5-norm: AT Ax =
ATb if and only if z = A*b+d for some d € ker(ATA) = range(AT A)* = range(A™)*,

and

14D+ d||* = [|A*BI|* + 2d" (A*D) + [|d]|* = [[A*D]* + [|d]]* = || A*D]]*.

The covariance matrix of the least squares solution is thus as given above:

Cov(z) = *(ATA)~!.
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Indeed, any solution z = A*b+ d with d € ker(AT A) has the same covariance matrix

and thus suffers from the same problem when A is ill conditioned.

We now look at the most classical case of regularization: Tikhonov ¢, regularization.
We will not be interested in purely ¢, regularization in this thesis because it does
not lead to sparse solutions, but we will take away some ideas from Tikhonov regu-
larization. Here we replace the constrained system Az = b by the minimization of
|| Az —bl|z with a constraint on the f3-norm of the solution ||z||2. That is we would like
to minimize ||Az — b|| while keeping ||z||2 below some number, say «. Equivalently,
we can minimize ||z||y and keep ||Ax — b|| below some number 3. By the theory of

Lagrange multipliers we can show that these problems are equivalent to solving:
min || Az — b3 + Al 3
1 2 2

for some suitable regularization parameter A. Since both terms of the above are

quadratic, we can take the gradient and obtain the solution in linear form:
2AT(Az —b) + 202, =0 = (ATA+ X)x, = ATb = z, = (ATA+ X)) ' A0

Above, this inverse matrix is generally used only if it has a particularly simple form.
If this is not the case, we use a method like conjugate gradients to solve the linear
system. The benefit of the above formulation is that it filters out the effects of

small singular values. We can see this by plugging in the SVD, A = UXV7 into the
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Tikhonov solution x; to obtain:

z = (USVHT(USVT) + A1) ATb
(VT avIvh) T (s T
(V(£2+AD)VT) T vsuTh
(V(E+ M)V VvEUT

= V(EZ2+ M) 'XU

— VDiag (02‘1’ A) UTb.

1

We see that the effect of the regularization is to filter the small singular values o,
by replacing each o; by U"TH, which prevents the singular values smaller than A from
dominating the solution. Next, we can also see that the covariance matrix for the

solution compares favorably to that of the naive solution (assuming the same white

noise conditions). Letting D = Diag(-7),

Cov(x,) = Cov(VDUTb) = VDUT Cov(b)UDVT = 2V DUTUDVT = *V D?*VT.

In fact, we have that:
2

v
C = 1| D?||s < —.
[ Cov(a)llz = w7l D7l2 < 15
This is because the function h(t) := t2i>\ achieves a maximum at ¢ = v/, with the
value 7 f

From the above description, the benefit of the simple /5 regularization is quite clear as
it allows us to compute reasonable solutions when the matrix A is not well conditioned
and when the right hand side data vector b has noise. From the introduction, however,
we know that we are interested in cases where the solutions are sparse. We discuss

the concept of sparsity in the following subsection.
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2.3 Sparsity

We now discuss the concept of sparsity and sparse solutions. We have seen what
sparsity is in Chapter 1, where we saw an example of a model that is sparse under
the action of a wavelet transform. The most direct measure of sparsity is the number
of nonzero entries of a vector, sometimes called its ¢y-norm, ||z||o. Note that this is

in fact not a proper norm; consider for example that:
3=1((2,2,2)[lo # [2][|(1,1,1)]]o =2 x 3 =6.

It is instructive to know that we can approximate the fy-norm using the £,-norm as

p — 0; we can define the fp-norm as [20]:

N
— 1i Z—N p
el =l el = lsg 3 b

This is motivated by the picture below where we display the graph of the function
f(zk,p) = |zi|P for different values of p between 0 and 2. From this plot, we can
see that as p approaches zero f(zy,p) approaches the indicator function which is 1
for nonzero xy, so that lim, o ||z|[} counts the nonzeros of the signal. We also plot
below a picture of projections unto the ¢, and ¢y balls. These show the solutions to

the minimization problems:
min{|z| + |y| : ez +biy =1} and min{z® +y* 1 aox + boy = o}

The first problem corresponds to ¢; minimization in two dimensions and the second
to f5 minimization. The intersection point for the first problem has a zero = or y

component (hence a sparse solution). For the ¢y case, the solution would be sparse
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only if the slope of the line is zero or infinity. This gives some motivation for why the
N

choice p < 2 in the penalty Z |zi|P leads to sparser solutions than p = 2.
k=1

N—
/

Figure 2.1: |z|P plotted for p = 2,1.5,1,0.5,0.2,0.05. Tllustration of ¢ minimization
and /; minimization in R?: we observe a sparse solution in the ¢; case.

For the constrained case, the two corresponding minimization problems giving sparse

solution are:

min ||z]|p s.t. Az = b, (P)

min ||z]|; s.t. Az =b. (Py)

The main result from the theory of compressed sensing [7, 8, 15, 16, 18, 24] is that
under certain conditions on A, the ostensibly NP-hard problem (Fp) and the convex
problem (Py) give identical answers. The conditions depend on the so called restricted

isometry property (RIP) of the matrix A. If there exists a constant o) such that for
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every k-sparse vector x € RY the following holds:

(L= ow)llzll; < [[Azll; < (1 + ow)llzll3, (2.3.1)

then the matrix A is said to satisfy the k-restricted isometry property with restricted
isometry constant oy, [8]. The equivalence result from compressed sensing is as follows:
Let o}, be the smallest number such that (2.3.1) holds for all k-sparse vector z € RY.
If oy < v/2 — 1, then for all k-sparse vectors z such that Az = b, the solution
of (P) is equal to the solution of (F) [8]. This landmark result is particularly
important because the norm ||z||; is the closest (convex) norm to ||x||p and, although
neither ||x||p nor ||z||; are smooth, dealing with (P;) is substantially easier. The
reason for this is that for convex functions, local optimality conditions (i.e. f(z) <
f(z + tv) for t € R) are enough to determine the global minimum value. Lastly ¢;
minimization has proven regularization benefits [11]. We note here also that under
some special conditions minimzing the ¢; norm may not give sparse solutions. An
example is mentioned in Chapter 3, with a matrix and right hand side vector of all
ones. However, in most practical cases one considers, minimizing the ¢; norm leads

to a sparse solution.

The Restricted Isometry Property is a very restrictive condition on the matrix A.
The RIP in the compressive sensing sense above will not be satisfied if there exists
for example a sparse vector in the null space of A (in that case ||Az|| = 0 and it is
not greater than (1 —oy)||x||3). This can occur when a small number of columns of A
are linearly dependent, more precisely when one of the columns can be expressed as
a linear combination of the (k — 1) others. In fact, a non-random matrix that is not
well conditioned and coming from a physical inverse problem like the one mentioned
in the Introduction is highly unlikely to satisfy the RIP. In addition, it is difficult to

check if in fact a matrix does satisfy it. On the other hand, even if ¢; minimization
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does not give the sparsest solution, it still does give reasonable sparse solutions for
most cases we encounter, including for systems with not well conditioned matrices

and noisy right hand sides.

The above discussion gives rise to two functionals that parallel those of Tikhonov

regularization, replacing the ¢5 penalty by one involving the ¢, or the ¢;-norm:

1Az — bllz + 27(lz[lo and [|Az —b||; + 27||z[]:.

The second is substantially easier to deal with than the first because it is convex -

for any v € (0,1):

e+ (1 =yl < [l + 10 =)yl = Azl + (T =)llylh

The conditions for the global minimizer (the local optimality conditions) can easily
be determined, but unlike for /5 minimization they cannot be expressed in a linear
form. Below, we derive the optimality conditions for the ¢; functional but first we
make a small comment. In the previous section we mentioned that in our application
the models are sparse under the action of some (wavelet) transform. This means that
we do not necessarily expect x to be sparse, but we do expect w = Wx to be sparse
where W denotes the wavelet transform matrix. Thus, we would instead want to
minimize ||[Mx — b||3 + 27||Wz||;, but with the substitution x = W ~w this takes the
same form as above: ||[MW ~'w — b||3 + 27||w||; where we take A = MW =1, Thus,
even if the sparsity is induced by a transform, as is true in many applications, the

above form of the functionals is applicable for the analysis.
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Lemma 2.3.1. The necessary and sufficient component-wise optimality conditions

for the minimizer of the functional F(z) = ||Ax — b||3 + 27]|x||1, where 7 > 0, are:

[AT(b— Az)]y = 7sgn(xy) , Vk with zy # 0,
| (AT(b— Ax))

(2.3.2)

k] < 7T , Vk with z;, = 0.

Proof. The conditions stated above are for a general vector x with components xy
for k € (1,...,N) some of whose components are zero and others are nonzero. We
derive N conditions below, one for each index k. First note that F' is convex and
hence every local minimizer is a global minimizer. Suppose x is a local minimizer of
F. Then for any t € R and z € RY, F(x) < F(z + tz) holds (since x is assumed to

be a minimizer), which implies:

2| Az||5 + 2t(z, AT (Az — b)) + 27 (||z + tz||s — ||=|[1) > 0. (2.3.3)
N
Note that ||z||; = le’f‘ = Z zpsgn(xyg), and if z, # 0, then sgn(zy + tz) =
k=1 70

sgn(zy) for small £. So for small enough ¢,

o+ t2lls = ) (ze +tan) sgnlae) + O [tze] = [zl +¢ Y sen(ze)z + [t D [zl.
70 =0 . #0 =0

(2.3.4)
Then for small ¢ # 0, (2.3.3) becomes:

|| Az||3 + 2t(z, AT(Ax — b)) + 271 (Z sgn(xg)zx + sgn(t) Z |zk|) > 0.

70 =0

The first term can be made arbitrarily small compared to the other so that we require:

2t ((z, AT(Ax — b)) + 7 Z sgn(xk)zk> + 27t Z |zk| > 0. (2.3.5)

1, 7#0 =0
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To get the k-th condition, fix a z = zzey, with e, = (0,...,1,...,0) with a 1 in the
k-th position and an arbitrary nonzero zj. If z; # 0, then substituting this z into
(2.3.5) gives:

2t ((z, A" (Az — b)) + Tsgn(xy)2) > 0

Since this holds for both positive and negative t we must have:
zi(en, AT(Az — b)) + 7sgn(zy)z, = 0.

which reduces to:

(AT(b— Ax)), =7sgn(zy) 5 xx#0
Next, for z;, = 0 we have, substituting z = zpe; into (2.3.5) that:
2t (sgn(t)zk(ek,AT(Ax — b))+ lek\) >0
Since t # 0 we must have that:
sen(t)zi (er, AT (Ax — b)) + 7|21| >0

But ¢ can be positive or negative, so we end up with the condition |(AT (b— Az))x| < T

for z;, = 0.

For the other direction, suppose x satisfies (2.3.2). We need to prove that it is then a
minimizer of F. Since F' is convex, any local minimizer is necessarily global and we

show that z is a local minimizer. For any z € RY and t € R,

(tz, AT(Az — b)) > —t > Tzpsgn(a) — [t Y |al|AT(Az — D)l

70 =0
> —7t Z sgn(zg)zx — Tt Z |2k |-
zp7#0 xR 70

24



For small enough nonzero ¢, (2.3.4) holds, so

| A(z + t2) — bl[2 + 27]|a + 2|,
= [|Az — bl[5 + 2t(z, AT (Az — b)) + || A2[[; + 2[|[x

+2rt Y sgn(zp)z + 27 Y |l

70 =0
> ||Az — b||3 + 27||2]|1.

Therefore x is a global minimizer of F. This completes both directions of the proof.

[]

It is not straightforward to find solutions for these nonlinear equations. We may note,
however, that x = 0 is a solution for 7 > maxy,(|(ATb).|), which we can see by plugging
in z = 0 into the optimality conditions. One approach to finding a solution compati-
ble with the optimality condition is to start with x = 0 and at 7, = maxy(|(ATb)z]).
Then for steps i > 2, we decrease T and pick nonzero components of x such that the
above conditions are satisfied. This principle underlies the LARS-LASSO algorithms
[19]; these methods however tend to become very slow as matrices get large. A faster
converging coordinate wise method, especially in cases a good estimate of the sup-
port set is available does exist. We discuss randomized coordinate descent later in

this chapter.

We now discuss some methods for the minimization of the ¢; functional:
F(z) = min ||Az — b||3 + 27||z]:. (2.3.6)

The main difficulty with the above ¢; functional is the non smooth 