
Regularization of Linear Systems with

Sparsity Constraints with Applications

to Large Scale Inverse Problems

Sergey Voronin

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Program in

Applied and Computational Mathematics

Adviser: Ingrid Daubechies

November 2012

c© Copyright by Sergey Voronin, 2012.

All Rights Reserved

Abstract

This thesis is about numerical methods for the regularization of large scale inverse

problems with sparsity constraints. Some new methods are proposed, and applied

to an inverse problem from Geotomography, the goal of which is to determine lati-

tudinal and longitudinal corrections to a spherically symmetric wave velocity model

of the Earth’s interior. The problem involves a very large, badly conditioned linear

system, whose solutions, expressed in an intricate coordinate system, can be sparsely

represented under the action of a wavelet transformation. The methods we develop

and analyze in this thesis are simple to implement, efficient and easy to parallelize on

large machines. In addition, the convergence analysis for the new algorithms assumes

minimal conditions on the linear systems they are applied to.

This thesis is organized as follows. After the introduction, we give in Chapter 2,

an overview of existing schemes for regularization with sparsity constraints, and we

introduce new material developed in the remainder of the thesis. Chapter 3 intro-

duces a new firm thresholding based scheme that overcomes some shortcomings of soft

thresholding; this scheme applies less penalty to the large coefficients of the iterates,

while producing solutions of comparable sparsity. Chapter 4 introduces two novel

methods based on an iteratively reweighted least squares strategy. These methods

are designed to minimize a new more general sparsity promoting functional, which

is especially useful for structured sparse problems, such as those encountered under

the action of a wavelet transform. Detailed convergence analysis is provided for these

two new algorithms. Chapter 5 discusses techniques that are useful for numerical

implementation, such as a fast implementation of a randomized low rank SVD ap-

proximation and matrix column norm estimations, useful for large badly conditioned

matrices. Finally, Chapter 6 presents the application, collecting ideas from the pre-

vious chapters and applying them to the inverse problem.

iii

Acknowledgements

I would like to sincerely acknowledge the contribution of many people on my work

and life while in graduate school. These include (but by no means exhaust): Ingrid

Daubechies, Ignace Loris, Hugo Woerdeman, Guust Nolet, Frederik Simons, Holger

Rauhut, Rick Chartrand, Jeroen Tromp, Jean Charlety, Cedric Vonesch, and Waheed

Bajwa. Amongst these, I would like to extend particular thanks to my advisor, In-

grid Daubechies, for greatly enriching my academic understanding and for helping to

arrange trips to visit others, which has significantly enhanced my work and graduate

experience. I would like to offer particular thanks to Ignace Loris, Guust Nolet, Hol-

ger Rauhut, and Rick Chartrand for hosting me on extended research visits. I would

like to thank the system administrators at Princeton and Duke: Josko Plazonic and

Andrew Schretter, most notably for their help in setting up the machines that I have

extensively used for my numerical work. Finally I would like to thank my family for

their continuous support and encouragement.

iv

Contents

Abstract . iii

Acknowledgements . iv

1 INTRODUCTION TO THE THESIS 1

1.1 General Remarks . 1

1.2 Notation . 9

2 REGULARIZATION, SPARSITY AND ALGORITHMS 13

2.1 Overview . 13

2.2 Regularization . 13

2.3 Sparsity . 19

2.4 Algorithms for `1 minimization: Soft Thresholding 26

2.5 Algorithms for `1 minimization: Dual Methods 40

2.6 Algorithms for `1 minimization: Multiplier Methods 45

2.7 Algorithms for `1 minimization: Coordinate Descent Method 48

2.8 New Approaches for `1 minimization: Modified Thresholding and Reweighted

Least Squares . 51

2.9 Algorithms for `0 minimization . 56

2.10 Chapter Remarks and Conclusions 59

3 AN ALTERNATIVE TO SOFT THRESHOLDING: A NEW SPARSITY-

TARGETING VARIABLE THRESHOLDING ALGORITHM 61

v

3.1 Overview . 61

3.2 Firm Thresholding . 64

3.3 Weight functions . 66

3.4 Iterative Varied Thresholding Algorithm 69

3.5 Numerical Experiments . 80

3.6 Chapter Remarks and Conclusions 88

4 TWO NEW ITERATIVELY REWEIGHTED LEAST SQUARES

ALGORITHMS FOR THE MINIMIZATION OF A GENERAL-

IZED SPARSITY PROMOTING FUNCTIONAL 90

4.1 Overview . 90

4.2 Generalized Sparsity Promoting Functional 93

4.3 Connection to Previous Work . 100

4.4 IRLS Algorithm . 107

4.5 IRLS SYS Algorithm . 119

4.6 More on Convergence . 135

4.7 Chapter Remarks and Conclusions 138

5 NUMERICS AND IDEAS FOR LARGE SCALE PROBLEMS 140

5.1 Overview . 140

5.2 Inverse Matrix Replacement for IRLS SYS 141

5.3 Coordinate Descent Method, Support Identification, and Column Norm

Estimation . 144

5.4 Variable Penalty Idea Applied to a Dual Space Algorithm 149

5.5 Regularization Parameter Estimation 154

5.6 Randomized Low Rank Approximation 156

5.7 Numerical Comparisons . 163

5.8 Chapter Remarks and Conclusions 172

vi

6 APPLICATION FROM GEOTOMOGRAPHY 173

6.1 Overview . 173

6.2 Travel-Time Tomography and Model Parameters 174

6.3 Cubed Sphere Grid and Wavelets . 181

6.4 Matrix Properties and Sample Reconstructions 185

6.5 Inversion . 191

6.6 Brief Description of Developed Software 199

6.7 Chapter Remarks and Conclusions 199

7 SUMMARY AND CONCLUSIONS 201

8 APPENDIX 210

8.1 Overview . 210

8.2 Pseudocode of Algorithms . 211

9 Bibliography 216

vii

Chapter 1

INTRODUCTION TO THE

THESIS

1.1 General Remarks

In this chapter, we offer some general remarks about the thesis. We conclude the

general discussion with a brief layout of the different chapters. We then describe the

mathematical notation used in the rest of the thesis.

We first describe the general idea. In this thesis, we discuss techniques (such as iter-

ative algorithms) useful for large inverse problems whose inversion step comes down

to the solution of a system of linear equations Āx̄ = b̄. This categorizes a large

number of inverse problems. We investigate iterative methods that can be used to

find solutions to such systems under the assumptions of large dimensions of Ā, noise

(in the right hand side b̄ and possibly even in the matrix Ā) and ill conditioning of

Ā (characterized by the sharp dropoff of its singular values), particularly when the

system is under-determined (has more columns than rows). We also pay particular

attention to the case when the solution x can be sparsely represented in a properly

chosen basis. The application alluded to in this thesis comes from Geotomography. In

1

this application, we are interested in determining corrections to a spherically symmet-

ric seismic wave velocity model (one that varies only with depth). A more complete

model, which accounts for longitude and latitude as well as depth, would lead to

better understanding of the Earth’s interior structure. The inversion step for this

applications boils down to a large under-determined linear system such as the one

described above. The methods developed in this thesis, however, are applicable to a

wide variety of different problems.

There are several points that we make note of and discuss here. These form the core

properties of the methods we consider and analyze in the later chapters. First of all

the size of the matrix in our applications is generally very large. For our Seismic

Geotomography application, the dimensions of the matrix in the linear system are

roughly half a million rows by three million columns. Although the matrix is sparse,

the size of the matrix in a common sparse format is still over one hundred gigabytes.

This effectively means that operations with such a matrix are time consuming and

moreover, are only possible to perform on parallel machines with access to a large

amount of RAM. We remark here that when parallel codes are at play, simplicity and

transparency of the methods used is key to error-free implementation and customiza-

tion. There are many techniques from convex analysis that could be applied to the

problem at hand. We focus on relatively simple methods in this thesis because these

are preferred by many in large scale applications, which already have such a high

level of complication that many would prefer to avoid convoluted algorithms. The

methods we consider involve predominantly matrix vector operations which can be

readily parallelized.

Besides the large size of the systems, the data vector b almost always has noise. In

general b is derived from observations, and there is always an associated error or

uncertainty in the measurements. Thus, we can write: b = b̄ + noise. The true

2

right hand side b̄ is typically unknown; the matrix A itself is also frequently based

on computations which may contain approximations. Hence, given only the noisy

b and possibly noisy A (not the exact b̄ and Ā), we cannot compute a solution x̄

satisfying the system exactly. Instead we look for a solution x that in some useful way

approximates the true solution x̄. Typically, we look for a solution with a particular

low residual value ||Ax−b||2 based on some criterion, for example an a-priori estimate

ν of the norm of the noise in b (ν ≈ ||noise||2) or some χ2 value (which we discuss in

Chapter 6).

A third issue is that of ill-conditioning. Many matrices arising from physical inverse

problems are not well conditioned. This means that their singular values fall off

rapidly (usually in a non-linear fashion) and the ratio of the largest and smallest

singular values, called the condition number, is very large. There are different reasons

for this ill-conditioning depending on the application. In the case of our application

in Geotomography, the matrix columns correspond to locations within the Earth

(parametrized by a specific choice of coordinate system). Data are based on the

recordings of seismic waves observed by receivers on the surface after earthquakes;

the data is thus geographically limited, particularly by the location of seismic sensors.

The Earth is covered mostly by water and there are few sensors in these locations;

on the other hand many geological sensors are located in the United States and in

the territory of the former Soviet Union. This uneven spread of data sensors is often

responsible for ill-conditioning in matrices derived from such data. The result of ill

conditioning is that small changes in the original system produce large changes in the

solution. This effectively means that noise in the right hand side vector b can cause

the solution x to be very different from x̄ unless proper regularization methods are

used.

3

Another aspect of physical inverse problems is that data is typically quite limited.

That means that at the end we want to solve for more unknowns than there are

observations and the matrix A above would have more columns than rows. In such

a case, the matrix A has a non-trivial kernel, and there are infinitely many solutions

that have a suitably small residual value ||Ax− b||. Thus, to obtain a single solution,

additional constraints must be set. This is again addressed by regularization; the

question reduces to a judicious choice of the constraints to introduce. The classical

constraint is that the two-norm of the solution be made small. This can be accom-

plished by minimizing ||Ax − b||22 + λ||x||22; it is well known that this leads to an

effective regularization method, which has the advantage that it can be implemented

in an arbitrary choice of orthonormal basis. When feasible, the solution is computed

in the orthonormal basis associated with the singular value decomposition (SVD) of

A; appropriate truncation leads to a solution that is sparse with respect to this basis.

In this thesis we make a particular focus on sparsity, but not with respect to the

SVD basis. This can be accomplished by replacing the two-norm penalty above by

a different penalty, for example, using the one-norm ||x||1. Sparsity is a popular and

useful constraint because in many instances the data can be sparsely represented in

some basis and the storage and manipulation of sparse data, especially that which is

high-dimensional, is both faster and easier. Imposing sparsity often also gets rid of

the small coefficients of the solution, a lot of which correspond to noise. Care must

be taken to choose the right regularization parameter (such as λ) above to come up

with an acceptable solution. This often takes multiple runs and is a substantial time

constraint. The basis with respect to which we wish to impose sparsity has to be

picked carefully: the solution is typically not sparse in its “standard” basis. However,

it can often be expressed as a sparse solution under the action of some transform. In

this thesis and for our Geotomography application, we make use of the wavelet trans-

form. Wavelets are known for their compressive power and are used extensively in

4

imaging and other areas. Functions that consist of a combination of smoothly varying

large-scale features on which much more localized spiky features are superimposed,

typically can be approximated well by sparse wavelet expansions. As a simple exam-

ple consider the model below and its three representations with different numbers of

wavelet coefficients (Figure 1.1):

Min=0

Max=0.00010893

−0.000109−5.45e−05 0.0 5.45e−050.000109

Wavelet function 1

Min=−0.10939

Max=0.040639

−0.109 −0.0547 0.0 0.0547 0.109

Figure 1.1: Scaling and Wavelet Function. Original model with 135000 nonzero
coefficients, Reconstructions with 10000 and 160 wavelet coefficients.

These particular wavelets are able to represent the model quite accurately with just a

few (of the largest) coefficients. Since we expect the solutions to the inverse problem

to consist of such combinations of smooth features and spikes, it is plausible to look

for sparse solutions in the wavelet domain.

Another issue is the complexity of the underlying coordinate system. The vector

x expressed as a regular column vector is one dimensional. However the data it

represents is often inherently multi-dimensional. Consider for example the cubed

sphere coordinate system [38] which is used in our Geotomography application. It is

a way of representing data on a sphere such as the Earth, by projecting at each depth

on the surface of an inscribed cube:

5

Min=−6.7352

Max=8.5231

−1 −0.5 0.0 0.5 1

Azimut: 90
o

n=(35
o
N,−120

o
E)

 ∆
x
=20km

 ∆
y
=20km

testslice

Min=−2.798
Max=2.3966

−1 0 1

Figure 1.2: The Cubed Sphere (figure courtesy of Frederik Simons) and Sample Model
on a Cubed Sphere Grid

We comment on this in more detail in a later chapter, here we simply want to point

out that the solution x may indeed be a high dimensional vector in a complicated

coordinate system. When the Earth is gridded via such a system as the above, each

coordinate corresponds to a chunk identifier, a 2-d location on the outer surface of

the chunk, and a depth. From Figure 1.1 we can see that crossing chunk boundaries

correspond to big jumps in such a coordinate system. When looking for the solution

in such a coordinate system we may require special treatment at the boundaries.

Another aspect that calls for attention is the resolution power of the matrix. The

matrix is typically such that it can only resolve x in a certain range of the coordinate

system. That is, even if the expected true solution x to a physical problem contains

data in all chunks, the action of the matrix on x may be sensitive to only part of x,

and the information in A may just not be able to “reproduce” the other parts of x.

This occurs in our Geotomography application because some columns of the matrix

have very small norm and contain little information. Consider for example, the plot

of column sums below for a sample matrix:

6

Figure 1.3: Column Sums of the Matrix

From the above figure it is clear that we would not recover anything useful beyond

the above range. Hence, to obtain a meaningful solution, we would like to penalize

coordinates outside the colored range with a greater sparse penalty, that is we would

require those parts of the solution to be effectively zero or close to zero so that the

solution is constructed over the meaningful part.

Figure 1.1 shows that a model is to a large degree compressible with the wavelet basis

used there. However, there are multiple choices for wavelet transforms and perhaps

some parts of a more complicated model are represented best without wavelets at

all. For this reason, allowing an inversion algorithm to pick from a set of bases and

assign different weights to them in some kind of a linear combination is beneficial to

recovering complicated sparse solutions. We shall address this as well.

Without mentioning mathematical details, we have now made a list of issues and

desirable characteristics to consider for our methods which we recall in a brief list

below:

• The matrix A is very large, possibly inexact, underdetermined and ill condi-

tioned.

7

• The data vector b contains noise. Since the matrix A is ill conditioned, this can

lead to big differences between the obtained and noiseless solutions if regular-

ization is not used.

• In many instances, solutions can be sparsely represented when a suitable trans-

form is used.

• We must do multiple runs to determine the right penalty parameter. This can

take a lot of time.

• Not all parts of the solution are created equal. This can be due to the coordinate

system structure and the structure of the matrix. We need to be able to treat

different coefficients differently.

• There are many choices of transforms (for example many different types of

wavelet bases), we would like to use a combination of several and let the algo-

rithm decide on the combination rather than pick a single family.

This thesis is about regularization algorithms designed to address these issues. The

developed techniques are then applied to the inverse problem in the application. We

present numerical algorithms and techniques which can be readily coded and tested

as well as detailed analytical derivations. We also develop a numerical framework,

including various software, for tackling the large scale computations from the inverse

problem. We now briefly describe the layout of the thesis, counting this Introduction

as Chapter 1. At the end of this chapter is a section on the notation used in the thesis.

Chapter 2 gives a detailed mathematical introduction to regularization and sparsity,

existing classes of algorithms, and new ideas, that are presented in more detail in

the later chapters. Chapter 3 introduces a new algorithm called FIVTA, which is an

analogue of the FISTA method introduced in Chapter 2. This method uses a new

two-parameter thresholding function and is faster converging in practice, since it can

8

produce comparable solutions to FISTA with a higher value for the regularization

parameter. It is also less sensitive to the parameter value. Chapter 4 introduces

two new algorithms that can be used to minimize a newly proposed generalized func-

tional that allows us to treat different parts of the solution in different ways. The

algorithms are based on a reweighted least squares idea, which approximates the non-

smooth portion of the functional with a weighted two norm. Detailed convergence

analysis is exhibited for these two algorithms. Chapter 5 presents some numerical

comparisons between different methods and includes some interesting ideas for the

methods introduced in the previous chapters. It also presents a randomized approach

to approximating matrix column norms and a fast randomized low rank SVD approx-

imation algorithm. Finally, Chapter 6 discusses the application in Geotomography.

It describes the inverse problem and shows how the methods exhibited earlier can be

applied to its solution. The thesis is concluded by a few pages of summary and con-

cluding remarks along with references. An Appendix at the end of the thesis exhibits

the pseudocode for some of the algorithms mentioned in the thesis, particularly for

all the newly introduced methods.

1.2 Notation

We now introduce the notation relevant to this thesis. The set of all real numbers is

denoted by R, and the set of all nonnegative numbers is denoted by R+. By extension

of notation, we have that the set of all positive numbers is defined by R++. The set of

all N -real vectors is denoted by RN . An element v ∈ RN consists of N real numbers

stacked in a columnwise order. A matrix M ∈ Rm×N represents an object of m

rows and N columns. We use the capital N instead of the lowercase n because most

matrices we encounter in this thesis are underdetermined, which means that m < N .

9

For a differentiable real valued function f : Rn1+n2 → R and vectors x ∈ Rn1 , y ∈

Rn2 , the vector∇xf(x, y) ∈ Rn1 is defined as
(

∂
∂x1
f(x, y), ∂

∂x2
f(x, y), . . . , ∂

∂xn1
f(x, y)

)
.

This notation extends to functions of a single variable or of more than two variables.

A norm on V = RN or Rm×N is a real valued function || · || : V → R that satisfies the

following criteria:

(1) ||x|| ≥ 0 for all x ∈ V , and ||x|| = 0 if and only if x = 0.

(2) ||λx|| = |λ|||x|| for all x ∈ V and λ ∈ R.

(3) ||x+ y|| ≤ ||x||+ ||y|| for all x, y ∈ V .

In RN , we are particularly interested in the family of so called `p-norms for p ≥ 1

(including p =∞). For any p ≥ 1, the `p-norm of a vector x ∈ RN is defined as

||x||p =

(
n∑
k=1

xpk

)1/p

.

The `∞-norm is defined as: ||x||∞ = maxi |xi|. Other norms are explicitly defined in

the thesis. We will make reference also to the so called `0 norm, which counts the

number of nonzero elements of a vector. We note later in this thesis that this is in

fact not a real norm and is a slight abuse of notation, yet we use this notation due

to its popularity. When the type of norm is not specified, as in ||y||, we assume the

use of the `2 norm.

The space RN as an inner product space, with the inner product between two elements

x and y defined as 〈x, y〉 = xTy =
N∑
i=1

xiyi. For example, the `2-norm is induced by

the Euclidean inner product, in the sense that ||x||2 =
√
〈x, x〉 for any x ∈ RN . For

any norm || · || on RN , we can define the corresponding dual norm || · ||∗ (with respect

10

to the Euclidean inner product): for any y ∈ RN ,

||y||∗ = max
x∈Rn,x 6=0

〈y, x〉
||x||

.

|| · ||∗ is a well-defined real valued function on RN . It is well known that for any p ≥ 0,

the dual norm of the `p-norm is the `q-norm, where q satisfies p−1 + q−1 = 1 (and

q =∞ if p = 1).

Next we present some definitions and basic notion about real matrices. For any vector

x = (x1, x2, . . . , xN) ∈ RN , D := Diag(x) = Diag(x1, x2, . . . , xN) ∈ RN×N is defined

as:

Dij =

xi if i = j,

0 otherwise.

We will make use of the singular value decomposition (SVD) of a real matrix A ∈

Rm×N : if A is of rank r, then there exist U ∈ Rm×r, V ∈ RN×r and Σ ∈ Rr×r such

that

(1) UTU = I, V TV = I,

(2) Σ = Diag(σ1, σ2, . . . , σr) ∈ Rk×k is a diagonal matrix with σ1 ≥ σ2 ≥ · · · ≥

σr > 0, and

(3) A = UΣV T .

This is known as the economic form of the SVD [25]. For 1 ≤ i ≤ min{m,N}, the i-th

largest singular value of A is defined to be σi, with σj = 0 for j = r+1, . . . ,min{m,N}

whenever r < min{m,N}. For convenience the following notation is also used:

the largest singular value of A: σmax(A) = σ1;

the smallest singular value of A: σmin(A) = σmin{m,N}.

11

The spectral norm of A is defined as ||A||2 = σmax(A). The generalized inverse

of A ∈ Rm×N with SVD A = UΣV T , is defined as A+ = V Σ−1UT (and Σ−1 =

Diag(σ−1
1 , σ−1

2 , . . . , σ−1
r) ∈ Rk×k).

By the matrix W we refer to a linear transform. We use W because in this thesis we

deal primarily with wavelet transforms, but the concepts apply equally well to other

linear transforms. By the notation AW−1 which appears frequently in the thesis,

we mean a product of two matrices A and W−1, the latter representing an inverse

transform. Note that explicit knowledge of W or W−1 is not required and is in fact

never used in this thesis; only the end result of the application of W , W−1, and

(W−1)T to vectors is necessary.

We now describe what we mean by the minimization problems posed in this thesis.

Given functions f, g : Rn → R, a minimization problem in the form minx f(x) s.t. g(x) =

0 refers to finding the minimum value of f(x) that can be attained among all x ∈ Rn

that satisfies g(x) = 0. We denote the optimal value by minx{f(x) : g(x) = 0}, and

the set of optimal solutions by arg minx{f(x) : g(x) = 0}. If the minimization prob-

lem is assumed to have only one optimal solution x̄, we write x̄ = arg minx{f(x) :

g(x) = 0} (rather than x̄ ∈ arg minx{f(x) : g(x) = 0}). Sometimes, the uniqueness

of the optimal solution may depend on the properties of f . For instance, f may be a

function of a matrix and the uniqueness may depend on the properties of this matrix.

Additionally, we would be concerned mostly with unconstrained problems. For such

problems, the constraint g(x) = 0 does not exist. In many places in this thesis, we

would thus use the notation x̄ = arg minx{f(x)}. By this statement, we mean that

we are interested to find a vector x̄ which minimizes the function f(x). There might

be another minimizer ȳ which produces the same value. That is, it may be possible

that f(x̄) = f(ȳ) and x̄ 6= ȳ. By the statement, x̄ = arg minx{f(x)}, we mean that

we are interested in finding a single minimizing vector x̄ for f such that f(x̄) ≤ f(y)

for all vectors y.

12

Chapter 2

REGULARIZATION, SPARSITY

AND ALGORITHMS

2.1 Overview

This chapter is a mathematical introduction into the rest of the thesis. We give an

introduction to regularization of linear systems, sparsity, and different schemes for

sparse regularization that can be used for large scale problems without strong condi-

tions on the matrix. Since there exist many available algorithms, we try to survey a

few different categories to which most of the existing methods can be assigned. We

also introduce the areas in which the later chapters of the thesis make new contribu-

tions.

2.2 Regularization

We now proceed to give a motivation for regularization, in the context of ill-conditioned

systems and noisy data vectors. We are particularly interested in systems that are

under-determined, as motivated in the introduction. When the system Ax = b is

13

under-determined, having more columns than rows, an infinite number of solutions

of the system exist. In this case, we wish to impose constraints on the solution to

pick a particular solution amongst many. Since A is not a square matrix, it only has

a generalized inverse as defined below. We start by introducing some notation. We

have A ∈ Rm×n with m < n and nonzero b ∈ Rm which is noisy (equal to the noise-

less unknown b̄ plus noise). We are interested in the case when A is ill-conditioned,

which means that the ratio between the largest and smallest non-zero singular values

(σmax(A)/σmin(A)) is large.

We first consider the under-determined form of A, setting aside the issue of noise

in b. In this case, the system Ax = b has infinitely many solutions generically and

additional constraints must be imposed for uniqueness. The simplest and most clas-

sical constraint to put on the solution is the minimum of the `2-norm. Consider then,

solving the problem minx ||x||2 s.t. Ax = b. It turns out that the solution is given in

terms of the generalized inverse A+b. Using the theory of Lagrange multipliers, we

define the Lagrangian:

L(x, y) = ||x||22 + yT (Ax− b),

where y is the vector of Lagrange Multipliers. Taking the gradient we get:

∇xL(x, y) = 2x+ ATy = 0 =⇒ x = −1

2
ATy.

We plug this into the constraint Ax = b which, using A = UΣV T leads to:

A(−1

2
ATy) = b =⇒ −1

2
UΣ2UTy = b =⇒ UTy = −2Σ−2UT b,

14

so the pseudo-inverse solution we get is:

x = −1

2
ATy = −1

2
(UΣV T)Ty = −1

2
V ΣUTy

= −1

2
V Σ(−2Σ−2UT b) = V Σ−1UT b = A+b.

This simple and naive solution, however, can give rather meaningless results when

the system is not well behaved. When A is ill-conditioned, many singular values σk

will be very small, so that the matrix Σ−1 which has diagonal terms 1
σk

will have very

large entries. In this case the generalized inverse matrix, when computed with finite

precision arithmetic, will not give an accurate solution.

Next, we consider the issue of noise. We can also see that this naive solution x will

be very sensitive to errors in the right hand side vector b. This is apparent from

the covariance matrix of the solution, as we now show. For this, we suppose that

b = b̄ + e where the noise vector e behaves like white noise. Its different entries are

then uncorrelated, each having mean 0 and standard deviation ν. If in addition the

elements of b̄ and e are uncorrelated we have:

Cov(e) = E[(e− E[e])(e− E(e))T] = E[eeT] = ν2I,

and:

Cov(b) = E[(b− E[b])(b− E(b))T] = E[eeT] = ν2I.

A property of covariance is that for a random vector v and a matrix A, Cov(Av) =

ACov(v)AT . We may then derive the spectral norm (i.e., the largest singular value)

of the covariance matrix ||Cov(x)||:

Cov(x) = Cov(A+b) = A+ Cov(b)(A+)T = ν2(ATA)+ =⇒ ||Cov(x)||2 =
ν2

σ2
min

,

15

where σmin is the smallest singular value of A. We see from the above that if A is

not well conditioned, the covariance matrix is likely to have very large elements, since

the smallest singular value of A will be small. This indicates that x = A+b is very

sensitive to data errors.

In the presence of noise when the true right hand side b̄ is not known, we may not

even be able to find a solution to Ax = b because the matrix and the right hand side

b (including the noise) may simply be incompatible (i.e. b 6∈ Ran(A)) so that the

problem has no solution. Instead we generally try to minimize ||Ax − b||22 (possibly

with additional constraints, as we will see below) and the generalized inverse can

also be used for this optimization problem. The function ||Ax − b||22 is convex and

differentiable, so the minimum satisfies:

∇x||Ax− b||22 = 0 =⇒ 2AT (Ax− b) = 0 =⇒ ATAx = AT b.

In fact, a common choice of solution of ATAx = AT b would be directly through the

generalized inverse:

x = (ATA)+AT b = (V Σ−2V T)V ΣUT b = A+b, (2.2.1)

because of all the solutions to ATAx = AT b, A+b has the smallest `2-norm: ATAx =

AT b if and only if x = A+b+d for some d ∈ ker(ATA) = range(ATA)⊥ = range(A+)⊥,

and

‖A+b+ d‖2 = ‖A+b‖2 + 2dT (A+b) + ‖d‖2 = ‖A+b‖2 + ‖d‖2 ≥ ‖A+b‖2.

The covariance matrix of the least squares solution is thus as given above:

Cov(x) = ν2(ATA)−1.

16

Indeed, any solution x = A+b+ d with d ∈ ker(ATA) has the same covariance matrix

and thus suffers from the same problem when A is ill conditioned.

We now look at the most classical case of regularization: Tikhonov `2 regularization.

We will not be interested in purely `2 regularization in this thesis because it does

not lead to sparse solutions, but we will take away some ideas from Tikhonov regu-

larization. Here we replace the constrained system Ax = b by the minimization of

||Ax−b||2 with a constraint on the `2-norm of the solution ||x||2. That is we would like

to minimize ||Ax− b||2 while keeping ||x||2 below some number, say α. Equivalently,

we can minimize ||x||2 and keep ||Ax− b||2 below some number β. By the theory of

Lagrange multipliers we can show that these problems are equivalent to solving:

min
x
||Ax− b||22 + λ||x||22

for some suitable regularization parameter λ. Since both terms of the above are

quadratic, we can take the gradient and obtain the solution in linear form:

2AT (Ax− b) + 2λxt = 0 =⇒ (ATA+ λI)xt = AT b =⇒ xt = (ATA+ λI)−1AT b.

Above, this inverse matrix is generally used only if it has a particularly simple form.

If this is not the case, we use a method like conjugate gradients to solve the linear

system. The benefit of the above formulation is that it filters out the effects of

small singular values. We can see this by plugging in the SVD, A = UΣV T into the

17

Tikhonov solution xt to obtain:

xt =
(
(UΣV T)T (UΣV T) + λI

)−1
AT b

=
(
V Σ2V T + λV IV T

)−1
(UΣV T)T b

=
(
V (Σ2 + λI)V T

)−1
V ΣUT b

=
(
V (Σ2 + λI)−1V T

)
V ΣUT b

= V (Σ2 + λI)−1ΣUT b

= V Diag

(
σi

σ2
i + λ

)
UT b.

We see that the effect of the regularization is to filter the small singular values σi,

by replacing each σi by σi
σ2
i+λ

, which prevents the singular values smaller than λ from

dominating the solution. Next, we can also see that the covariance matrix for the

solution compares favorably to that of the naive solution (assuming the same white

noise conditions). Letting D = Diag(σi
σ2
i+λ

),

Cov(xt) = Cov(V DUT b) = V DUT Cov(b)UDV T = ν2V DUTUDV T = ν2V D2V T .

In fact, we have that:

||Cov(xt)||2 = ν2‖D2‖2 ≤
ν2

4λ
.

This is because the function h(t) := t
t2+λ

achieves a maximum at t =
√
λ, with the

value 1
2
√
λ
.

From the above description, the benefit of the simple `2 regularization is quite clear as

it allows us to compute reasonable solutions when the matrix A is not well conditioned

and when the right hand side data vector b has noise. From the introduction, however,

we know that we are interested in cases where the solutions are sparse. We discuss

the concept of sparsity in the following subsection.

18

2.3 Sparsity

We now discuss the concept of sparsity and sparse solutions. We have seen what

sparsity is in Chapter 1, where we saw an example of a model that is sparse under

the action of a wavelet transform. The most direct measure of sparsity is the number

of nonzero entries of a vector, sometimes called its `0-norm, ||x||0. Note that this is

in fact not a proper norm; consider for example that:

3 = ||(2, 2, 2)||0 6= |2|||(1, 1, 1)||0 = 2× 3 = 6.

It is instructive to know that we can approximate the `0-norm using the `p-norm as

p→ 0; we can define the `0-norm as [20]:

||x||0 = lim
p→0
||x||pp = lim

p→0

N∑
k=1

|xk|p.

This is motivated by the picture below where we display the graph of the function

f(xk, p) = |xk|p for different values of p between 0 and 2. From this plot, we can

see that as p approaches zero f(xk, p) approaches the indicator function which is 1

for nonzero xk, so that limp→0 ||x||pp counts the nonzeros of the signal. We also plot

below a picture of projections unto the `1 and `2 balls. These show the solutions to

the minimization problems:

min{|x|+ |y| : a1x+ b1y = c1} and min{x2 + y2 : a2x+ b2y = c2}.

The first problem corresponds to `1 minimization in two dimensions and the second

to `2 minimization. The intersection point for the first problem has a zero x or y

component (hence a sparse solution). For the `2 case, the solution would be sparse

19

only if the slope of the line is zero or infinity. This gives some motivation for why the

choice p < 2 in the penalty
N∑
k=1

|xk|p leads to sparser solutions than p = 2.

−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

2

1.5

1

0.5

0.2

0.05

Figure 2.1: |x|p plotted for p = 2, 1.5, 1, 0.5, 0.2, 0.05. Illustration of `2 minimization
and `1 minimization in R2: we observe a sparse solution in the `1 case.

For the constrained case, the two corresponding minimization problems giving sparse

solution are:

min
x
||x||0 s.t. Ax = b, (P0)

min
x
||x||1 s.t. Ax = b. (P1)

The main result from the theory of compressed sensing [7, 8, 15, 16, 18, 24] is that

under certain conditions on A, the ostensibly NP-hard problem (P0) and the convex

problem (P1) give identical answers. The conditions depend on the so called restricted

isometry property (RIP) of the matrix A. If there exists a constant σk such that for

20

every k-sparse vector x ∈ RN the following holds:

(1− σk)||x||22 ≤ ||Ax||22 ≤ (1 + σk)||x||22, (2.3.1)

then the matrix A is said to satisfy the k-restricted isometry property with restricted

isometry constant σk [8]. The equivalence result from compressed sensing is as follows:

Let σk be the smallest number such that (2.3.1) holds for all k-sparse vector x ∈ RN .

If σk <
√

2 − 1, then for all k-sparse vectors x such that Ax = b, the solution

of (P1) is equal to the solution of (P0) [8]. This landmark result is particularly

important because the norm ||x||1 is the closest (convex) norm to ||x||0 and, although

neither ||x||0 nor ||x||1 are smooth, dealing with (P1) is substantially easier. The

reason for this is that for convex functions, local optimality conditions (i.e. f(x) ≤

f(x + tv) for t ∈ R) are enough to determine the global minimum value. Lastly `1

minimization has proven regularization benefits [11]. We note here also that under

some special conditions minimzing the `1 norm may not give sparse solutions. An

example is mentioned in Chapter 3, with a matrix and right hand side vector of all

ones. However, in most practical cases one considers, minimizing the `1 norm leads

to a sparse solution.

The Restricted Isometry Property is a very restrictive condition on the matrix A.

The RIP in the compressive sensing sense above will not be satisfied if there exists

for example a sparse vector in the null space of A (in that case ||Ax|| = 0 and it is

not greater than (1−σk)||x||22). This can occur when a small number of columns of A

are linearly dependent, more precisely when one of the columns can be expressed as

a linear combination of the (k − 1) others. In fact, a non-random matrix that is not

well conditioned and coming from a physical inverse problem like the one mentioned

in the Introduction is highly unlikely to satisfy the RIP. In addition, it is difficult to

check if in fact a matrix does satisfy it. On the other hand, even if `1 minimization

21

does not give the sparsest solution, it still does give reasonable sparse solutions for

most cases we encounter, including for systems with not well conditioned matrices

and noisy right hand sides.

The above discussion gives rise to two functionals that parallel those of Tikhonov

regularization, replacing the `2 penalty by one involving the `0 or the `1-norm:

||Ax− b||22 + 2τ ||x||0 and ||Ax− b||22 + 2τ ||x||1.

The second is substantially easier to deal with than the first because it is convex -

for any γ ∈ (0, 1):

||γx+ (1− γ)y||1 ≤ ||γx||1 + ||(1− γ)y||1 = γ||x||1 + (1− γ)||y||1

The conditions for the global minimizer (the local optimality conditions) can easily

be determined, but unlike for `2 minimization they cannot be expressed in a linear

form. Below, we derive the optimality conditions for the `1 functional but first we

make a small comment. In the previous section we mentioned that in our application

the models are sparse under the action of some (wavelet) transform. This means that

we do not necessarily expect x to be sparse, but we do expect w = Wx to be sparse

where W denotes the wavelet transform matrix. Thus, we would instead want to

minimize ||Mx− b||22 + 2τ ||Wx||1, but with the substitution x = W−1w this takes the

same form as above: ||MW−1w − b||22 + 2τ ||w||1 where we take A = MW−1. Thus,

even if the sparsity is induced by a transform, as is true in many applications, the

above form of the functionals is applicable for the analysis.

22

Lemma 2.3.1. The necessary and sufficient component-wise optimality conditions

for the minimizer of the functional F (x) = ||Ax− b||22 + 2τ ||x||1, where τ > 0, are:

[AT (b− Ax)]k = τ sgn(xk) , ∀ k with xk 6= 0,

|
(
AT (b− Ax)

)
k
| ≤ τ , ∀ k with xk = 0.

(2.3.2)

Proof. The conditions stated above are for a general vector x with components xk

for k ∈ (1, . . . , N) some of whose components are zero and others are nonzero. We

derive N conditions below, one for each index k. First note that F is convex and

hence every local minimizer is a global minimizer. Suppose x is a local minimizer of

F . Then for any t ∈ R and z ∈ RN , F (x) ≤ F (x + tz) holds (since x is assumed to

be a minimizer), which implies:

t2||Az||22 + 2t〈z, AT (Ax− b)〉+ 2τ (||x+ tz||1 − ||x||1) ≥ 0. (2.3.3)

Note that ||x||1 =
N∑
k=1

|xk| =
∑
xk 6=0

xk sgn(xk), and if xk 6= 0, then sgn(xk + tzk) =

sgn(xk) for small t. So for small enough t,

||x+ tz||1 =
∑
xk 6=0

(xk + tzk) sgn(xk) +
∑
xk=0

|tzk| = ||x||1 + t
∑
xk 6=0

sgn(xk)zk + |t|
∑
xk=0

|zk|.

(2.3.4)

Then for small t 6= 0, (2.3.3) becomes:

t2||Az||22 + 2t〈z, AT (Ax− b)〉+ 2τt

(∑
xk 6=0

sgn(xk)zk + sgn(t)
∑
xk=0

|zk|

)
≥ 0.

The first term can be made arbitrarily small compared to the other so that we require:

2t

(
〈z, AT (Ax− b)〉+ τ

∑
xk 6=0

sgn(xk)zk

)
+ 2τ |t|

∑
xk=0

|zk| ≥ 0. (2.3.5)

23

To get the k-th condition, fix a z = zkek with ek = (0, . . . , 1, . . . , 0) with a 1 in the

k-th position and an arbitrary nonzero zk. If xk 6= 0, then substituting this z into

(2.3.5) gives:

2t
(
〈z, AT (Ax− b)〉+ τ sgn(xk)zk

)
≥ 0

Since this holds for both positive and negative t we must have:

zk〈ek, AT (Ax− b)〉+ τ sgn(xk)zk = 0.

which reduces to: (
AT (b− Ax)

)
k

= τ sgn(xk) ; xk 6= 0

Next, for xk = 0 we have, substituting z = zkek into (2.3.5) that:

2|t|
(
sgn(t)zk〈ek, AT (Ax− b)〉+ τ |zk|

)
≥ 0

Since t 6= 0 we must have that:

sgn(t)zk〈ek, AT (Ax− b)〉+ τ |zk| ≥ 0

But t can be positive or negative, so we end up with the condition |(AT (b−Ax))k| ≤ τ

for xk = 0.

For the other direction, suppose x satisfies (2.3.2). We need to prove that it is then a

minimizer of F . Since F is convex, any local minimizer is necessarily global and we

show that x is a local minimizer. For any z ∈ RN and t ∈ R,

〈tz, AT (Ax− b)〉 ≥ −t
∑
xk 6=0

τzk sgn(xk)− |t|
∑
xk=0

|zk||AT (Ax− b)k|

≥ −τt
∑
xk 6=0

sgn(xk)zk − τ |t|
∑
xk 6=0

|zk|.

24

For small enough nonzero t, (2.3.4) holds, so

||A(x+ tz)− b||22 + 2τ ||x+ tz||1

= ||Ax− b||22 + 2t〈z, AT (Ax− b)〉+ t2||Az||22 + 2||x||1

+2τt
∑
xk 6=0

sgn(xk)zk + 2τ |t|
∑
xk=0

|zk|

≥ ||Ax− b||22 + 2τ ||x||1.

Therefore x is a global minimizer of F . This completes both directions of the proof.

It is not straightforward to find solutions for these nonlinear equations. We may note,

however, that x = 0 is a solution for τ ≥ maxk(|(AT b)k|), which we can see by plugging

in x = 0 into the optimality conditions. One approach to finding a solution compati-

ble with the optimality condition is to start with x = 0 and at τ1 = maxk(|(AT b)k|).

Then for steps i ≥ 2, we decrease τ and pick nonzero components of x such that the

above conditions are satisfied. This principle underlies the LARS-LASSO algorithms

[19]; these methods however tend to become very slow as matrices get large. A faster

converging coordinate wise method, especially in cases a good estimate of the sup-

port set is available does exist. We discuss randomized coordinate descent later in

this chapter.

We now discuss some methods for the minimization of the `1 functional:

F (x) = min
x
||Ax− b||22 + 2τ ||x||1. (2.3.6)

The main difficulty with the above `1 functional is the non smooth term ||x||1 =
N∑
k=1

|xk|. Otherwise, if all the terms of the functional could be differentiated, a number

of different methods such as steepest descent or conjugate gradients could then be

25

used on the derivative set equal to zero. As this is not possible, two approaches are

available: either to deal directly with the non-smooth parts by means of the so called

soft thresholding operator, which we introduce below, or to approximate the non-

smooth portion (||x||1) by a smooth approximation. In the latter case, we are able

to utilize the same approaches as discussed above, but the quality depends on the

quality of the approximation. Another possibility is to deal with the dual problem

of `1 minimization, which we also discuss. We mention also the coordinate descent

method, which works by optimizing a single entry of the functional at a time, keeping

the others fixed. We split our discussion into separate subsections. In each subsection

we cover a different category of the methods. We also introduce the new approaches

that are discussed in detail in later chapters of the thesis.

2.4 Algorithms for `1 minimization: Soft Thresh-

olding

In this section we consider methods that treat the non-smooth terms directly, by

means of the soft thresholding operator.

Definition 2.4.1. The soft thresholding operator Sτ is defined by:

Sτ (x) =

x− τ, x ≥ τ ;

0, −τ ≤ x ≤ τ ;

x+ τ, x ≤ −τ .

The operator can be defined for a vector component-wise as (Sτ (x))k = Sτ (xk) ∀ k =

1, . . . , N .

26

Lemma 2.4.2. The soft thresholding operator satisfies the minimization problem:

Sτ (b) = arg min
x
||x− b||2 + 2τ ||x||1.

The soft thresholding operator is also non-expansive:

||Sτ (x)− Sτ (y)||2 ≤ ||x− y||2,

and for any α ∈ R:

αSτ (x) = Sατ (αx).

Proof. Since:

||x− b||22 + 2τ ||x||1 =
N∑
k=1

(
(xk − bk)2 + 2τ |xk|

)
,

the proof follows by looking at the one dimensional case of the above functional,

namely the function:

f(x) = (x− b)2 + 2τ |x|.

First note that f is a strictly convex function and has a unique minimizer. Suppose

b ≥ τ . In this case, Sτ (b) = b− τ . Since f(b− τ) = τ 2 + 2τ(b− τ) = 2bτ − τ 2, for all

x ∈ R, (|x| ≥ x) and so:

f(x) ≥ x2 − 2bx+ b2 + 2τx

= x2 − 2(b− τ)x+ (b− τ)2 − (b− τ)2 + b2

= (x− (b− τ))2 + 2bτ − τ 2

≥ 2bτ − τ 2 = f(b− τ) = f(Sτ (b)),

27

so that Sτ (b) is a minimizer of f in this case. Next, suppose b ≤ −τ . Since f(b+τ) =

τ 2 − 2τ(b+ τ) = −2bτ − τ 2, for all x ∈ R, (|x| ≥ −x) and so:

f(x) ≥ x2 − 2bx+ b2 − 2τx

= x2 − 2(b+ τ)x+ (b+ τ)2 − (b+ τ)2 + b2

= (x− (b+ τ))2 − 2bτ − τ 2

≥ −2bτ − τ 2 = f(b+ τ) = f(Sτ (b)).

Finally, if |b| ≤ τ , then 2τ |x| ≥ 2|b||x| = 2|bx| and so:

f(x) ≥ (x− b)2 + 2|bx| = x2 + 2(|bx| − bx) + b2 ≥ b2 = f(0) = f(Sτ (b)).

Hence, the minimizer of the function is given by the soft-thresholding operator applied

to b. The result now follows, since soft thresholding applied to a vector is a component

wise operation applied to each component.

For the proof that the soft thresholding operator is non-expansive, we must look at

the different cases which depend on the values of x and y with respect to τ . Consider

for example the case when x and y are both greater than τ . Then Sτ (x) = x− τ and

Sτ (y) = y − τ . Then we have that:

||Sτ (x)− Sτ (y)||2 = ||x− τ − (y − τ)||2 = ||x− y||2.

Next consider the case x > τ and y < −τ . Then Sτ (x) = x − τ and Sτ (y) = y + τ

and:

||Sτ (x)− Sτ (y)||2 = ||x− τ − (y + τ)||2 = ||(x− y)− 2τ ||2 ≤ ||x− y||2,

28

since in this case (x − y) > 2τ . The proof follows by direct verification in all the

different cases. The proof that

αSτ (x) = Sατ (αx)

also follows by direct verification.

We now discuss the ISTA and FISTA schemes [2], which rely directly on Lemma

2.4.2. These iterative algorithms involve the use of the soft thresholding function.

We first introduce ISTA, the Iterative Soft Thresholding Algorithm using a surrogate

functional approach. This concept also applies to other algorithms discussed in this

thesis. The main idea is to add and subtract terms from the functional F (x) =

||Ax− b||22 + 2τ ||x||1 such that the minimization is easier to carry out. For instance,

we would like to get rid of the ||Ax||22 terms from the first term in the functional.

We use the method of so called majorization-minimization, to force the successive

iterates to reduce the value of the functional. The value of this approach is that

it allows us to deduce easily imortant properties of the algorithm such as ||xn+1 −

xn||2 → 0 and the boundedness of xn. We reuse this approach in later chapters

to analyze more complicated algorithms which we introduce. This majorization-

minimization approach works by picking a two parameter function G(x, y) with the

following properties:

G(x, y) ≥ F (x) ∀x, y, and G(x, x) = F (x), (2.4.1)

and defining the algorithm by: xn+1 = arg minG(x, xn). The first inequality above

implies in particular that F (xn+1) ≤ G(xn+1, xn). Thus, by the above definition for

xn+1 it follows that:

F (xn+1) ≤ G(xn+1, xn) ≤ G(xn, xn) = F (xn),

29

and so such an algorithm leads to a decrease of the value of the cost functional. The

difficult part is to construct a suitable function G.

For the `1 functional, a suitable function G can be defined by:

G(x, y) = ||Ax− b||22 − ||A(x− y)||22 + ||x− y||22 + 2τ ||x||1. (2.4.2)

Note that if ||A||2 < 1, then:

||A(x− y)||22 ≤ ||A||22||x− y||22 ≤ ||x− y||22 =⇒ G(x, y) ≥ F (x) ∀x, y.

Also, G(x, x) = F (x) for all x. Thus G satisfies the criteria in (2.4.1).

Expanding (2.4.2) we have:

G(x, y) = ||Ax||22 − 2〈Ax, b〉+ ||b||22

− ||Ax||22 + 2〈Ax,Ay〉 − ||Ay||22 + ||x||22 − 2〈x, y〉+ ||y||22 + 2τ ||x||1

= ||x||22 − 2〈x, y + AT (b− Ay)〉+ 2τ ||x||1 − ||Ay||22 + ||y||22 + ||b||22

= ||x− (AT b− ATAy + y)||22 + 2τ ||x||1

+
(
||y||22 + ||b||22 − ||Ay||22 − ||y + AT b+ ATAy||22

)
.

Hence given y = xn,

arg min
x
G(x, xn) = arg min

x
||x−

(
AT b− ATAxn + xn

)
||2 + 2τ ||x||1

= Sτ
(
AT b− ATAxn + xn

)
,

which leads to the scheme:

xn+1 = Sτ
(
xn + AT b− ATAxn

)
. (ISTA)

30

We now want to show that the iterates of (ISTA) converge to a minimizer of the

`1 functional. We will prove that this is true for all converging subsequences of the

iterates and we will show that a converging subsequence exists. Global convergence

algorithms for this algorithm can be found in [11]. First, we need a lemma that char-

acterizes the fixed point for an `1 minimizer. We need the notion of subdifferential,

an analogue of derivatives but for non-differentiable convex functions.

Definition 2.4.3. The subdifferential of a convex function f : RN → R at x ∈ RN is

the set

∂f(x) =
{
d ∈ RN : f(y) ≥ f(x) + 〈d, y − x〉, ∀ y

}
.

Lemma 2.4.4. If f is differentiable at x, then ∂f(x) = {∇f(x)}. x̄ is a minimizer

of f if and only if 0 ∈ ∂f(x̄).

More properties of subdifferentials can be found in [36]. Now we state the lemma

which characterizes the minimizer. We would then show that the limit point of

converging subsequences satisfies this fixed point form.

Lemma 2.4.5. The minimizer of the `1 functional F (x) = ||Ax − b||22 + 2τ ||x||1 is

characterized by the relation:

x = Sτ (x+ AT b− ATAx).

Proof. We recall first the previous result:

Sτ (c) = arg min
x

{
||x− c||2 + 2τ ||x||1

}
= arg min

x

{
N∑
k=1

(xk − ck)2 + 2τ
N∑
k=1

|xk|

}
.

Now using subdifferentials we have that since ∂x||x − c||22 = {2(x − c)} and by the

above lemma:

x̄ ∈ arg min
x
||x− c||22 + 2τ ||x||1 ⇐⇒ 0 ∈ 2(x̄− c) + 2τ∂‖x̄‖1. (2.4.3)

31

Since Sτ (c) = arg minx ||x− c||22 + 2τ ||x||1 we have that:

0 ∈ (x̄− c) + τ∂x‖x̄‖1 ⇐⇒ x̄ = Sτ (c).

Now we have that x̄ is a minimizer of the convex functional ||Ax − b||22 + 2τ ||x||1 if

and only if:

0 ∈ AT (Ax̄− b) + τ∂‖x̄‖1 =
(
x̄− (x̄+ AT b− ATAx̄)

)
+ τ∂‖x̄‖1.

Setting c = x̄+ AT b− ATAx̄ and using the above argument the result:

x̄ = arg min
x
‖x− (x̄+ AT b− ATAx̄)‖2 + 2τ‖x‖1 = Sτ (x̄+ AT b− ATAx̄)

follows.

Now we prove a lemma about the iterates of ISTA.

Lemma 2.4.6. For the ISTA scheme defined through the majorization-minimization

procedure:

xn+1 = arg min
x
G(x, xn) = Sτ

(
xn + AT b− ATAxn

)
with ||A||2 < 1 and

G(x, y) = ||Ax− b||22 + ||x− y||22 − ||A(x− y)||22 + 2τ ||x||1,

we have that ||xn − xn+1||2 → 0 and that the iterates (xn) are bounded.

Proof. Notice that for ||A||2 < 1 we have:

||A(x− y)||22 ≤ ||A||22||x− y||22 ≤ ||x− y||22 =⇒ ||x− y||22− ||A(x− y)||22 ≥ 0. (2.4.4)

32

Now we can write:

G(xn+1, xn) = ||Axn+1 − b||22 + ||xn+1 − xn||22 − ||A(xn − xn+1)||22 + 2τ ||xn+1||1

G(xn+1, xn+1) = ||Axn+1 − b||22 + 2τ ||xn+1||1.

Then

G(xn+1, xn)−G(xn+1, xn+1) = ||xn+1 − xn||22 − ||A(xn − xn+1||22,

and hence, we have that:

G(xn+1, xn+1) ≤ G(xn+1, xn) ≤ G(xn, xn)

where the first inequality follows from (2.4.4) and the second follows from xn+1 =

arg minxG(x, xn). Now we can write the following telescoping sum:

P∑
n=1

(
G(xn+1, xn)−G(xn+1, xn+1)

)
≤

P∑
k=1

(
G(xn, xn)−G(xn+1, xn+1)

)
= G(x1, x1)−G(xP+1, xP+1) ≤ C,

which implies that:

P∑
n=1

(
G(xn+1, xn)−G(xn+1, xn+1)

)
=

P∑
n=1

(
||xn − xn+1||22 − ||A(xn − xn+1)||22

)
≤ C.

Since ||A(xn − xn+1)||22 ≤ ||A||22||xn − xn+1||22 and ||A||2 < 1:

||xn − xn+1||22 − ||A(xn − xn+1)||22 ≥ ||xn − xn+1||22 − ||A||22||xn − xn+1||2

= (1− ||A||22)||xn − xn+1||2.

33

Consequently, we have:

P∑
n=1

(1− ||A||22)||xn − xn+1||2 ≤
P∑
n=1

(
||xn − xn+1||22 − ||A(xn − xn+1)||22

)
≤ C

=⇒
P∑
n=1

||xn − xn+1||22 ≤
C

(1− ||A||22)
= C2

=⇒
∞∑
n=1

||xn − xn+1||22 <∞

=⇒ ||xn − xn+1||2 → 0.

For the proof that (xn) is bounded, consider:

||xn||1 ≤ G(xn, xn) = ||Axn − b||22 + 2τ ||xn||1 ≤ G(xn−1, xn−1) ≤ G(x0, x0) = C3.

The boundedness of the `1-norm implies ||xn||2 ≤ C3.

The boundedness of the iterates implies the existence of a converging subsequence

(xnk) with:

xnk → x̄ and xnk+1 → x̄,

where the second follows by ||xn − xn+1||2 → 0. Thus it follows that:

lim
k→∞

xnk+1 = lim
k→∞

Sτ (xnk + AT b− ATAxnk) =⇒ x̄ = Sτ (x̄+ AT b− ATAx̄).

By the previous lemma it follows that x̄ minimizes the `1 penalty functional and at

least one subsequence converging to x̄ exists. In fact, we can show that the limit

point of every converging subsequence is an `1 minimizer:

Lemma 2.4.7. Every convergent subsequence of (xn) converges to a local minimizer

of F (x).

Proof. Take any convergent subsequence xmj which converges to x̂. Let nlr → x̄. ∃jr

such that mjr > nlr by definition of a subsequence. Since G(xn+1, xn+1) ≤ G(xn, xn)

34

it follows that:

F (xmjr) = G(xmjr , xmjr) ≤ G(xnlr , xnlr) = F (xnlr)→ F (x̄)

Taking the limit of the left side as r →∞ we have:

F (x̂) ≤ F (x̄)

so x̂ is a minimizer.

Having discussed the ISTA scheme using the majorization minimization approach,

we not look more at majorization minimization to see how it can be used to derive

schemes for related algorithms. First, let us see how it applies to `2 regularization.

Going back to the functional F2(x) = ||Ax − b||22 + 2λ||x||22 we have the majorizer

given by:

G2(x, xn) = ||Ax− b||22 + 2λ||x||22 + ||x− xn||22 − ||A(x− xn)||22

= ||x||22 − 2〈x, xn + AT b− ATAxn〉+ 2λ||x||22 +K2.

Setting xn+1 = arg minxG2(x, xn) we arrive at:

∇xG2(x, xn) = 2x− 2xn − 2AT b+ 2ATAxn + 4λx = 0,

and the scheme:

xn+1 =
1

1 + 2λ
(xn + AT b− ATAxn).

We see that the thresholding has been replaced by the damping term 1
1+2λ

.

35

Now we look at what happens when both the `1 and `2 penalties are included:

G(x, xn) = ||Ax− b||22 + ||x− xn||22 − ||A(x− xn)||22 + 2τ ||x||1 + 2λ||x||22

= ||x− (xn + AT b− ATAxn)||22 + 2τ ||x||1 + 2λ||x||22 +K3.

Now we look at the one dimensional version of this functional:

f(x) = (x− b)2 + 2τ |x|+ 2λx2,

and we want to minimize this with respect to x. Consider first the case b > 0. Then

since the last two terms, |x| and x2 are both positive for any sign of x, we should also

have x > 0 so that (x− b)2 is small. We then have:

x̄ = arg min
x

{
2τx+ 2λx2 + (x− b)2

}
=⇒ 2τ + 4λx̄+ 2(x̄− b) = 0

=⇒ (1 + 2λ)x̄ = b− τ

=⇒ x̄ =
b− τ

1 + 2λ
for b > τ.

Similarly for b < 0 we get that x < 0 and we get:

x̄ = arg min
x

{
−2τ x̄+ 2λx2 + (x− b)2

}
=⇒ −2τ + 4λx̄+ 2(x̄− b) = 0

=⇒ x̄ =
b+ τ

1 + 2λ
for b < −τ.

Finally if, |b| ≤ τ we have that 2τ |x| ≥ 2|b||x| = 2|bx| and so:

f(x) ≥ (x− b)2 + 2|bx|+ 2λx2 = x2 + 2(|bx| − bx) + 2λx2 + b2 ≥ b2 = f(0).

36

so that zero is a minimizer for this case. Hence, we have the following solution:

arg min
x

(x− b)2 + 2τ |x|+ 2λx2 =

b− τ
1 + 2λ

if b > τ,

0 if |b| ≤ τ,

b+ τ

1 + 2λ
if b < −τ.

We thus have that by the properties of soft thresholding:

arg min
x

(x− b)2 + 2τ |x|+ λx2 =
1

1 + λ
Sτ (b),

which motivates the following iteration for the minimization of ||Ax− b||22 +2τ ||x||1 +

λ||x||22:

xn+1 =
1

1 + λ
Sτ
(
xn + AT b− ATAxn

)
.

Going back now to `1 minimization, we now discuss some alternatives to the ISTA

scheme. The main problem with (ISTA) is that it is known to have a slow rate of

convergence. The paper [2] gives the following result:

Theorem 2.4.8 ([2], Theorem 3.1). For any x0 ∈ RN , let xn be the iterates generated

by (ISTA). If ||A||2 < 1, then for all n we have the following estimate:

F (xn)− F (x̄) ≤ ||x
0 − x̄||2

n
,

where x̄ is any minimizer of (2.3.6).

The proof follows from the paper, where we have used in their notation f(x) =

||Ax − b||2 so that we can take for instance the Lipschitz constant to be L(f) = 2

when ||A||2 < 1 since:

||∇f(x)−∇f(y)|| = ||2ATAx− 2ATAy|| ≤ 2||ATA||2||x− y||2 < 2||x− y||2.

37

One improvement on this scheme is to use instead of the soft-thresholding operator

a projection onto the `1 ball [13]. Replacing the above iteration by:

xn+1 = PR
(
xn + AT b− ATAxn

)
,

where the projection onto the `1 ball PR can be expressed in terms of the soft thresh-

olding function. The algorithm has better numerical properties but still a slow rate

of convergence.

In practice, when using soft thresholding for `1 minimization one uses the FISTA

algorithm, which has a much faster rate of convergence. The algorithm is designed

to minimize the function f(x) + g(x), where f is a continuously differentiable convex

function with Lipschitz continuous gradient (i.e., ||∇f(x)−∇f(y)||2 ≤ L||x− y||2 for

some constant L), and g is a continuous convex function, but possibly non-smooth, as

in the case of 2τ ||x||1. The FISTA algorithm uses the function (proximal mapping):

pL(y) = arg min
x

{
g(x) +

L

2

∥∥∥∥x− (y − 1

L
∇f(y))

∥∥∥∥2
}

to define the following algorithm:

y1 = x0 ∈ RN , t1 = 1 and iterate:

xn = pL(yn) = arg min
x

{
g(x) +

L

2

∥∥∥∥x− (y − 1

L
∇f(y))

∥∥∥∥2
}

tn+1 =
1 +

√
1 + 4t2n
2

yn+1 = xn +
tn − 1

tn+1

(xn − xn−1).

(FISTA)

Let us now work out the above for F (x) = ||Ax− b||22 and G(x) = 2τ ||x||1. We have:

||∇f(x)−∇f(y)||2 = ||2ATAx− 2ATAy||2 = ||2ATA(x− y)||2 ≤ 2||ATA||2||x− y||2,

38

so that the Lipschitz constant is L = 2||ATA||2. If we scale A by 1
α

where α =

σmax(A) then L = 2(1)2 = 2. Then we have that:

arg min
x

{
g(x) +

L

2

∥∥∥∥x− (y − 1

L
∇f(y))

∥∥∥∥2
}

= arg min
x

{
2τ ||x||1 +

2

2

∥∥∥∥x− (y − 1

2
2AT (Ay − b))

∥∥∥∥2
}

= arg min
x

{
2τ ||x||1 +

∥∥x− (y − AT (Ay − b))
∥∥2
}

= Sτ (y − AT (Ay − b)),

so the each step of FISTA above is just the same soft thresholding as before but now

applied to the vector y which is a linear combination of the previous two iterates.

The main result concerning this algorithm is that the convergence rate is now much

faster:

Theorem 2.4.9 ([2], Theorem 4.4). For any x0 ∈ RN , let xn be the iterates generated

by (FISTA). If ||A||2 < 1, then for all n we have the following estimate:

F (xn)− F (x̄) ≤ 2L||x0 − x̄||2

(n+ 1)2
,

where x̄ is any minimizer of (2.3.6).

The ISTA and FISTA methods are amongst the most popular for `1 minimization and

are widely used. In my experience, FISTA is one of the fastest general purpose meth-

ods across different applications. The choice of soft thresholding, however, also has

an evident shortcoming in that it shrinks the large components of the input vector.

This motivates the search for an alternative algorithm using a different thresholding

function, which towards the end of the iteration, keeps the large coefficients at con-

stant size. We describe more on this later in this chapter and a method based on a

modified thresholding function (IVTA) is the basis of the following chapter.

39

2.5 Algorithms for `1 minimization: Dual Methods

We proceed now to describe methods that do not use thresholding. In particular, we

would like to mention an approach based on the dual of the `1-norm, as mentioned

in [47]. We first prove that the dual of the `1-norm is given by the `∞-norm:

Lemma 2.5.1. Consider the `1-norm defined by:

‖x‖1 :=
N∑
i=1

|xi| ∀x ∈ RN .

Then the dual of ‖ · ‖1 is given by:

‖y‖∞ := max
i
{|yi|} .

Proof. Fix any y ∈ RN , and consider

α := max
x∈RN

〈x, y〉
‖x‖1

.

For any x ∈ RN ,

〈x, y〉 ≤
N∑
i=1

|xi| |yi| ≤ max
i
{|yi|} ‖x‖1,

so α ≤ maxi {|yi|}. To show equality, consider an example where k is such that

|yk| = maxi {|yi|}. Define

x̄i =

0 if i 6= k,

sgn(yk) if i = k.

Then ‖x̄‖1 = 1 and

〈x̄, y〉 = sgn(yk)yk = |yk| = max
i
{|yi|} .

40

Thus, we have:

α =
〈x̄, y〉
||x̄||1

= max
i
{|yi|} .

Therefore the dual norm of ‖ · ‖1 is given by

||y||∞ := max
i
{|yi|} .

The idea of dual methods is to solve the dual problem and use that solution to obtain

the solution to the original problem. We now briefly describe the dual approach as

summarized in [6]: Given a constrained problem:

min
x
f(x) s.t. Ax = b,

the Lagrangian is defined as:

L(x, y) = f(x) + yT (b− Ax).

The dual function is:

g(y) = min
x
L(x, y)

and the dual problem becomes maxy g(y). Once we solve the dual problem for ȳ =

arg maxy g(y) we can use as the solution to the original problem, the solution of:

x̄ = arg min
x
L(x, ȳ)

We now describe the dual augmented Lagrangian approach for the constrained prob-

lem for `1 minimization:

min
x
‖x‖1 s.t. Ax = b, (2.5.1)

41

where A ∈ Rm×N and b ∈ Rm. We want to compute the dual of this problem. The

Lagrangian of (5.4.1) is given by

L(x, y) = ‖x‖1 + yT (b− Ax).

We need to compute minx L(x, y) for each fixed y. Since the function L(·, y) is sepa-

rable, we have

min
x
L(x, y) = bTy + min

x

N∑
i=1

|xi| − (ATy)ixi

= bTy +
N∑
i=1

min
xi

{
|xi| − (ATy)ixi

}

=

bTy if

∣∣(ATy)i
∣∣ ≤ 1 ∀ i = 1, . . . , N

−∞ otherwise,

where we have used the fact that for any β ∈ R,

min
t∈R
|t| − βt =

0 if |β| ≤ 1

−∞ otherwise.

(2.5.2)

To see this, consider for example t > 0. Then |t| − βt = t(1 − β). For β ≤ 1, the

minimum value is 0 at β = 1. For β > 1, t(1 − β) → −∞. The dual of (5.4.1) is

obtained by taking the maximum of minx L(x, y) with respect to y:

max
y

bTy s.t.
∣∣(ATy)i

∣∣ ≤ 1,

or equivalently,

max
y

bTy s.t. ‖ATy‖∞ ≤ 1. (D)

42

We can introduce a new variable z and change the sign of b to obtain the equivalent

problem:

min
y
−bTy s.t. z = ATy, ‖z‖∞ ≤ 1. (2.5.3)

Then we apply the idea of the augmented Lagrangian by removing the constraint

z = ATy and making it a penalty term, so we would be looking at the optimization

problem

min
x,y,z

Lµ(y, z, x) := −bTy − xT (z − ATy) +
µ

2
‖z − ATy‖2

2 s.t. ‖z‖∞ ≤ 1. (2.5.4)

Differentiating L with respect to different variables we get:

∇xLµ(y, z, x) = ATy − z

∇yLµ(y, z, x) = −b+ Ax+ µA(ATy − z)

∇zLµ(y, z, x) = −x+ µ(z − ATy).

Now, as in [46] we perform the minimization minx,y,z Lµ(y, z, x) by keeping two of

the three variables constant and updating one variable of the x, y, z at a time. We

then have: Now observe that when x = xn and y = yn are fixed,

min
z
{Lµ(yn, z, xn) : ‖z‖∞ ≤ 1}

= −bTyn + (xn)TATyn + min
z

{µ
2
‖z − ATyn‖2

2 − (xn)T z : ‖z‖∞ ≤ 1
}

= −bTyn + (xn)TATyn +
N∑
k=1

min
zk

{µ
2

(zk − (ATyn)k)
2 − xnkzk : |zk| ≤ 1

}
.

43

Hence, we have that:

arg min
z
{Lµ(yn, z, xn) : ‖z‖∞ ≤ 1}

=

{
ū : ∀ k, ūk = P[−1,1]

(
arg min

zk

{µ
2

(zk − (ATyn)k)
2 − xnkzk

})}
=

{
ū : ∀ k, ūk = P[−1,1]

(
xnk
µ

+ (ATyn)k

)}
,

where PS is the component-wise projection onto set S. Thus, the update for z be-

comes:

zn+1 = P[−1,1]

(
zn

µ
+ (ATyn)

)
.

Once this update has been made, we can proceed to update y. Differentiating −bTy−

xT (z − ATy) + µ
2
‖z − ATy‖2

2 with respect to y and setting to zero we have:

−b+ Ax+ µA(ATy − z) = 0.

Solving for y and plugging in zn+1 and xn we get that:

µAATyn+1 = µAzn+1 − (Axn − b) =⇒ (AAT)yn+1 = Azn+1 − 1

µ
(Axn − b).

The above update can be approximated simply with one iteration of the conju-

gate gradient algorithm. For the update in the x direction we use the gradient

∇xLµ(x, y, z) = ATy − z to write the iteration:

xn+1 = xn − µ(zn+1 − ATyn+1).

44

Thus, a dual augmented Lagrangian method may be implemented as:

zn+1 = P[−1,1]

(
zn

µ
+ (ATyn)

)
(AAT)yn+1 =

(
Azn+1 − 1

µ
(Axn − b)

)
xn+1 = xn − µ(zn+1 − ATyn+1).

The major computation at each iteration consists of updating the variable y. We find

that the single conjugate gradient iteration approach as mentioned in [46] gives good

numerical performance. The background to this method (called DALM for Dual

Augmented Lagrangian Method) and FISTA are stated here for completeness and

because of their good numerical performance, we compare all the newly developed

algorithms to these methods.

2.6 Algorithms for `1 minimization:

Multiplier Methods

Having discussed in the above subsection, the dual augmented Lagrangian method,

we present here a short discussion on the method of the Alternating Direction Method

of Multipliers, based on the reference in [6]. We will present the details here, since

we will revisit this method later in the application section.

The idea of ADMM is to solve the following problem:

min
x,y

f(x) + g(z) s.t. Ax+Bz = c.

The method summarized below, is useful in practice, largely because it converges

with small assumptions on f and g and a lot of problems can be posed in the above

45

form. The most important assumptions for convergence are that f and g should be

convex. The augmented Lagrangian for the corresponding system is:

Lµ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) +
µ

2
||Ax+Bz − c||22.

The ADMM scheme proceeds by carrying out the minimization of Lµ(x, z, y) with

respect to x and z and then the dual update step:

xn+1 = arg min
x
Lµ(x, zn, yn)

zn+1 = arg min
z
Lµ(xn+1, z, yn)

yn+1 = yn + µ(Axn+1 +Bzn+1 − c).

Let us now apply the ADMM algorithm to the minimization of the unconstrained `1

functional:

min

{
1

2
||Mx− b||22 + τ ||x||1

}
= min

{
1

2
||Mx− b||22 + τ ||z||1 : z − x = 0

}
.

In reference to the above, we thus have:

f(x) =
1

2
||Mx− b||22 , g(z) = τ ||z||1 , A = −I , B = I , c = 0.

Applying the above, we have:

Lµ(x, z, y) =
1

2
||Mx− b||22 + τ ||z||1 + yT (z − x) +

µ

2
||z − x||22

46

Let us find the update scheme for xn by carry out the minimization with respect to

x:

∂

∂x

(
1

2
||Mx− b||22 − yTx+

µ

2
||z − x||22

)
= MT (Mx− b)− y − µ(z − x) = 0

=⇒ MTMx+ µx−MT b− y − µz = 0

=⇒ (MTM + µ)x = MT b+ y + µz

=⇒ x = (MTM + µI)−1
(
MT b+ y + µz

)
.

If we assume that y, the vector of Lagrange multipliers, is negative, we have:

xn+1 = (MTM + µI)−1
(
MT b− yn + µzn

)
.

We now derive the update scheme for zn.

arg min
z

{
τ ||z||1 + yT z +

µ

2
||z − x||22

}
= arg min

z

{
2
τ

µ
||z||1 +

2

µ
yT z + ||z − x||22

}
= arg min

z

{
2
τ

µ
||z||1 + ||z − (x− 1

µ
y)||22

}
= S τ

µ

(
x− 1

µ
y

)
.

Assuming y is negative, we get the scheme:

zn+1 = S τ
µ

(
xn+1 +

1

µ
yn
)
.

Finally, substituting in A = −I, B = I, and c = 0 we get the following update scheme

for y:

yn+1 = yn + µ(xn+1 − zn+1).

The parameter µ can be set initially to a fixed value and increased by a constant

factor at each iteration. The disadvantage of the above scheme for the `1 problem is

47

that it calls for a linear solve at each iteration, although that can be approximated,

for example, by a single step of the CG algorithm at each iteration.

2.7 Algorithms for `1 minimization: Coordinate

Descent Method

We now present a third approach called coordinate descent (see for example [45])

which optimizes over individual entries of the functional, one at a time, while keeping

the other entries fixed. That is, given some initial guess x0, at each iteration, the

algorithm randomly selects an entry in the current solution vector and keeping all

the other entries fixed changes this entry so as to decrease the value of the `1 func-

tional. This randomness of the sweep pattern is essential to the speed of convergence,

although of course, if the dimension of x is large, this method will tend to be slow.

In practice, however, we find that the method works when the choice of entries is

restricted to the identified (or estimated) support of the sparse signal. We discuss

some ideas for support identification in the numerical experiments chapter, but in

general we find that this is not possible to do with ill conditioned matrices.

As mentioned above idea of the coordinate descent method is that given F (x) =

F (x1, . . . , xN) we want to update one coordinate at a time while fixing all the others

at each step. Choose a coordinate xj. We would like to derive a formula to update this

coordinate so that the `1 function evaluated at the new vector with this coordinate

changed has a smaller than or equal value than before. We have:

x̄j = arg min
u
F (x1, . . . , xj−1, u, xj+1, . . . , xN),

48

and the solution at the new iterate n+1 becomes: (xn1 , . . . , x̄j, . . . , x
n
N). To derive the

formula for updating each component, we must expand out the terms in F (x) and

separate the terms involving xj from the rest. Consider then:

||Ax− b||22 = ||Ax||22 − 2〈Ax, b〉+ ||b||22 = 〈ATAx, x〉 − 2〈AT b, x〉+ ||b||22.

Only the first two terms have dependence on xj. Consider the first term.

〈ATAx, x〉

=
N∑
i=1

(
N∑
k=1

(ATA)i,kxk

)
xi =

N∑
i=1

∑
k 6=j

(ATA)i,kxkxi +
N∑
i=1

(ATA)i,jxjxi

=
∑
i 6=j

∑
k 6=j

(ATA)i,kxkxi +
∑
k 6=j

(ATA)j,kxkxj +
∑
i 6=j

(ATA)i,jxjxi + (ATA)j,j(xj)
2

=
∑
i 6=j

∑
k 6=j

(ATA)i,kxkxi + 2
∑
k 6=j

(ATA)j,kxkxj + (ATA)j,j(xj)
2.

Next:

2〈AT b, x〉 = 2
∑
k 6=j

(AT b)kxk + 2(AT b)jxj and ||x||1 = |xj|+
∑
k 6=j

|xk|.

Now taking only terms that have xj into account the minimization problem reduces

to:

arg min
xj

{
||Ax− b||22 + 2τ ||x||1

}
= arg min

xj

{
(ATA)j,j(xj)

2 − 2(AT b)jxj + 2
∑
k 6=j

(ATA)j,kxkxj + 2τ |xj|

}

= arg min
xj

{
||Aj||22(xj)

2 − 2(AT b)jxj + 2
∑
k 6=j

(ATA)j,kxkxj + 2τ |xj|

}
,

49

where Aj = Aej, the j-th column of the matrix A. Now we have that (ATA)j,k =∑M
l=1A

T
j,lAl,k and:

∑
k 6=j

(ATA)j,kxkxj =
∑
k 6=j

M∑
l=1

ATj,lAl,kxkxj =
M∑
l=1

∑
k 6=j

ATj,lAl,kxkxj =
M∑
l=1

∑
k 6=j

Al,jAl,kxkxj,

so that the terms in the minimization above add to:

2
∑
k 6=j

(ATA)j,kxkxj − 2(AT b)jxj = 2
M∑
l=1

∑
k 6=j

Al,kAl,jxkxj − 2
M∑
k=1

Ak,jbkxj

= 2
M∑
l=1

∑
k 6=j

Al,kAl,jxkxj − 2
M∑
l=1

Al,jblxj

= 2
M∑
l=1

Al,j

(∑
k 6=j

Al,kxk − bl

)
xj.

Thus, we have that:

arg min
xj

{
||Ax− b||22 + 2τ ||x||1

}
= arg min

xj

{
||Aj||22(xj)

2 − 2βjxj + 2τ |xj|
}
,

with βj =
∑M

l=1Al,j

(
bl −

∑
k 6=j Al,kxk

)
and Aj = Aej. Set xj = u, we then minimize:

arg min
u

{
||Aj||2u2 − 2βju+ 2τ |u|

}
= arg min

u

{
||Aj||2(u− βj

||Aj||2
)2 + 2τ |u|

}
= arg min

u

{
(u− βj

||Aj||2
)2 + 2

τ

||Aj||2
|u|
}
.

Since Sτ (b) = arg minu {(u− b)2 + 2τ |u|} we have:

arg min
u

{
(u− βj

||Aj||2
)2 + 2

τ

||Aj||2
|u|
}

= S τ
||Aj ||2

(
βj
||Aj||2

)
=

1

||Aj||2
Sτ (βj),

50

using the previously defined soft thresholding operator. Thus, at each iteration, we

update one coordinate xj using the formula:

x̄j =
1

||Aj||2
Sτ (βj) with βj =

m∑
l=1

Al,j

(
bl −

∑
k 6=j

Al,kxk

)
.

We see from above that the implementation is given in simple form in terms of the

soft thresholding operator and we discuss the computational details further in the

numerical section of the thesis.

2.8 New Approaches for `1 minimization:

Modified Thresholding and

Reweighted Least Squares

We now describe some ideas for new sparse regularization algorithms, which are then

analyzed in more detail in subsequent chapters. First, we go back to look at the

Soft-Thresholding operator. We observe from the figure below that a property of this

operation is that it shrinks the large coefficients of the vector, something we may not

want to do at later stages of the iteration, when the larger components have already

been determined. This property of soft thresholding can be clearly seen in the plot

below:

In Chapter 3, we propose a new set of algorithms (IVTA/FIVTA) that use a different

thresholding function, which does not have this property. The algorithms are shown

to have some numerical advantages over the soft thresholding schemes, most notably

in terms of the speed of convergence.

We now describe another approach to the problem, which consists of replacing the

non-smooth part of the `1 functional by a smooth approximation, i.e. replacing

51

Figure 2.2: Soft thresholding function. Lines (solid) at ±τ and (dashed) identity
function. We see that for larger values the soft thresholding function stays away from
the identity, thus penalizing the large components.

||Ax− b||22 +2τ ||x||1 by ||Ax− b||22 +2τθ(x) where θ(x) is some smooth approximation

to the `1-norm ||x||1. The advantage of this approach is that the new functional, which

is an approximation to the original, is now entirely smooth and can be differentiated,

so a method like steepest descent can be used to work with the gradient of the new

functional. In addition, since the new functional is convex, all that remains is to

set its derivative to zero and solve the corresponding linear equations, which may be

done by a number of different methods. In particular the popular conjugate gradient

method may be used.

The non-smooth part of the `1 functional is the `1-norm ||x||1 =
N∑
k=1

|xk|. We now

describe a simple method to construct a smooth approximation to ||x||1. This can

be accomplished by approximating the absolute value function |x| by convolving it

with a bump function parametrized by its “width”. As this width tends to zero, the

smoothed result will approach the original function. As an example, consider the

Gaussian Function defined as f(x) = 1
2πσ2 e

−x2
2σ2 with g(x) = |x|. The convolution will

be a smooth function, but as σ → 0, the result will approximate the non-smooth |x|.

The routine, but tedious calculation is shown below:

52

Lemma 2.8.1. Let:

f(t) =
1

2πσ2
e
−t2
2σ2 , g(t) = |t| , H(T, t) =

∫ T

−T
f(s)g(s− t)ds.

We have that:

(f ∗ g)(t) = lim
T→∞

H(T, t) = t erf

(
t√
2σ

)
+

√
2

π
σe
−t2
2σ2 ,

where the error function is defined as: erf(x) = 2√
π

∫ x

0

e−u
2

du.

Proof. Fix σ > 0. For t ∈ R, let us define:

f(t) =
1√

2πσ2
exp

(
− t2

2σ2

)
and g(t) = |t|;

then the convolution is given by (f ∗ g)(t) = limT→∞H(T, t) where:

√
2πσ2H(T, t) :=

√
2πσ2

∫ T

−T
f(s)g(t− s)ds =

∫ T

−T
exp

(
− s2

2σ2

)
|t− s|ds.

Expanding the above we have that:

∫ T

−T
exp

(
− s2

2σ2

)
|t− s|ds

=

∫ t

−T
exp

(
− s2

2σ2

)
(t− s)ds+

∫ T

t

exp

(
− s2

2σ2

)
(s− t)ds

= t

(∫ t

−T
exp

(
− s2

2σ2

)
ds−

∫ T

t

exp

(
− s2

2σ2

)
ds

)
+

∫ t

−T
exp

(
− s2

2σ2

)
(−s)ds+

∫ T

t

exp

(
− s2

2σ2

)
sds

=
√

2σt

(∫ t/
√

2σ

−T/
√

2σ

exp
(
−u2

)
du−

∫ T/
√

2σ

t/
√

2σ

exp
(
−u2

)
du

)

+σ2

(∫ t

−T
exp

(
− s2

2σ2

)(
− s

σ2

)
ds−

∫ T

t

exp

(
− s2

2σ2

)(
− s

σ2

)
ds

)
.

53

Next, making use of the definition of the error function and of the fundamental

theorem of calculus we have:

√
2πσ2H(T, t) =

√
π

2
σt

(
erf

(
t√
2σ

)
− erf

(
−T√

2σ

)
− erf

(
T√
2σ

)
+ erf

(
t√
2σ

))
+σ2

(∫ t

−T

d

ds

[
exp

(
− s2

2σ2

)]
ds−

∫ T

t

d

d

[
exp

(
− s2

2σ2

)]
ds

)
=
√

2πσt erf

(
t√
2σ

)
+ 2σ2

(
exp

(
− t2

2σ2

)
− exp

(
− T 2

2σ2

))
,

so that, since exp
(
− T 2

2σ2

)
→ 0 as T →∞, we have:

(f ∗ g)(t) = lim
T→∞

H(T, t) = t erf

(
t√
2σ

)
+

√
2

π
σ exp

(
− t2

2σ2

)
.

The result of the above lemma is that for small σ the following approximation holds:

|xk| ≈ xk erf

(
xk√
2σ

)
+

√
2

π
σe
−x2k
2σ2

We illustrate the result of the above computation in the figure below, where we can

clearly see that the convolution smooths out the sharp corner of the absolute value,

at the expense of being off the true value around zero:

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

−0.5 0 0.5
0

1

2

3

4

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

Figure 2.3: Absolute value, Gaussian with σ = 0.1 and the resulting smooth approx-
imation from the convolution.

54

It follows that we can approximate the `1-norm as:

||x||1 =
N∑
k=1

|xk| ≈
N∑
k=1

(
xk erf

(
xk√
2σ

)
+

√
2

π
σe
−x2k
2σ2

)
.

This approximation is now differentiable at all values of xk. We now use the approx-

imation:

||Ax− b||22 + 2τ ||x||1 ≈ ||Ax− b||22 + 2τ
N∑
k=1

(
xk erf

(
xk√
2σ

)
+

√
2

π
σe
−x2k
2σ2

)
,

and compute the gradient to the right hand side:

2AT (Ax− b) + 2τ

(
erf(

x1√
2σ

) + x1
2√
π

1√
2σ
e−

x21
2σ2 −

√
2

π
σ

2x1

2σ2
e−

x21
2σ2 , . . . ,

erf(
xN√
2σ

) + xN
2√
π

1√
2σ
e−

x2N
2σ2 −

√
2

π
σ

2xN
2σ2

e−
x2N
2σ2

)
.

Based on this, a simple steepest descent scheme may be implemented.

Another possible approximation to the non-smooth portion is possible and is the

basis of two new algorithms discussed later in the thesis. One comment on the

above approximation is that the approximation is of the same quality, regardless of

the number of iterations of the algorithm. That is, the smoothed approximation is

always some distance away from the `1-norm ||x||1, no matter how many iterations

of steepest descent or a similar scheme we implement. The algorithms in chapter 3

of the thesis present a different, iteratively reweighted approach, which produces an

approximation that is closer to the original as the iterations progress. We consider

the relation:

||x||1 =
N∑
k=1

|xk| =
N∑
k=1

x2
k

|xk|
=

N∑
k=1

x2
k√
x2
k

if xk 6= 0 ∀k.

55

To adjust for the case when some xk = 0 (which in case of sparse solutions will always

occur), we can instead use the approximation:

||x||1 =
N∑
k=1

|xk| =
N∑
k=1

wnkx
2
k =

N∑
k=1

x2
k√

x2
k + ε2n

where the wnk = 1√
x2k+ε2n

represents a weight and where the parameter εn → 0 as

n → ∞. As we will see in a later chapter, algorithms based on this approach are

indeed possible and work well, provided the sequence of (εn)’s is chosen in a right

way. These algorithms, along with their convergence analysis, are amongst the main

theoretical contributions of this thesis.

Next, having discussed a few different approaches to `1 minimization, we see that

similar methods are possible for the non-convex `0 functional.

2.9 Algorithms for `0 minimization

In the same way, as for the `1 functional, similar algorithms for `0 can also be used,

but the corresponding numerical implementation becomes harder due to the strong

nonconvexity of the functional. Special care must be taken to avoid local minima

and in general algorithms for the minimization of the `0 function do not produce

good results in case of ill-conditioning and noise. The first amongst the algorithms

we mention are the so called Greedy algorithms. These algorithms typlically solve

a very simple optimization problem in each iteration, and obtain the “best imme-

diate or local solution” which at the same time is feasible for the original problem.

This class includes the classical matching pursuits [23, 30, 35], othogonal matching

pursuit [42], CoSaMP [31], and iterative support detection introduced in [44]. These

algorithms tend to perform well for RIP abiding matrices, but brake down outside

this regime. For this reason, we do not discuss the above methods in detail as they

56

are not directly applicable to our problem. We now mention a few other methods

for `0 minimization, since in particular, they can be used in conjunction with the `1

methods once an accurate estimate of the support has been obtained (taking care to

then threshold outside this support set). We state now, two algorithms involving the

hard thresholding operator, known as IHT [4, 5] and its accelerated variant AIHT [3]:

xn+1 = HK(xn + AT b− ATAxn), (2.9.1)

where HK(x) is a nonlinear operator that sets all but the largest K elements of x to

zero. The convergence of the method to a local minimizer of

min
x
||Ax− b||22 s.t. ||x||0 ≤ s (2.9.2)

has been proved in [4]. There are some techniques for accelerating convergence. In

particular, we discuss what is known as the AIHT variant. Given the iterate xn we

compute xn+1 in the usual fashion and compute along side it a different candidate.

We then either set xn+1 = xn+1 or to the update.

a1 =
〈b− Axn+1, A(xn+1 − xn)〉

||A(xn+1 − xn)||22

and pn+1 = xn+1 + a1(xn+1 − xn).

a2 =
〈b− Apn+1, A(pn+1 − xn−1)〉
||A(pn+1 − xn−1)||22

and qn+1 = pn+1 +a2(pn+1−xn−1). Then we can update xn+1 based on the condition:

if ||b − AHK(qn+1)||22 > ||b − Axn+1||22 then we set: xn+1 = xn+1 and otherwise, we

use: xn+1 = HK(qn+1). The above formulas come from the conditions:

a1 = arg min
a
||b− Apn+1||2 and a2 = arg min

a
||b− Aqn+1||2.

57

Expanding the expression for a1 we have

||b− Apn+1||2

= ||b− A
(
xn+1 + a1(xn+1 − xn)

)
||2

= ||b− Axn+1||2 − 2a1〈b− Axn+1, A(xn+1 − xn)〉+ a2
1||A(xn+1 − xn)||2.

Differentiating the above with respect to a1 setting to zero and solving for a1 we

recover the condition for a1.

Having described the two thresholding methods above, we now mention that meth-

ods based on the approximation of the `0-norm also exist. Let us mention one such

approximation from [21]:

||x||0 = N − lim
n→∞

Gσ(x) where Gσ(x) =
N∑
k=1

e

(
−x2k
2σ2

)
,

where N is the dimension of the vector x. Then we can replace ||Ax−b||22 +2τ ||x||0 by

the functional ||Ax − b||22 + 2τ (N −Gσ(x)) and for small σ this would approximate

the above functional. As before in the `1 approximation case, both terms of the

new functional are smooth. In the above reference a steepest descent algorithm was

suggested. Here we instead show a scheme based on Newton’s method. The gradient

is:

∇F (x) = 2AT (Ax− b) + 2τ
1

σ2
(x1e

− x21
2σ2 , . . . , xNe

− x2N
2σ2).

For Newton’s method we can compute the Hessian matrix:

∇2F (x) = 2ATA+ 2τ
1

σ2
Diag

(
(x2

k − σ2)e
−x2k
2σ2

)
.

58

and then iterate:

(∇2F (xn))δxn = −∇F (xn) ; xn+1 = xn + δxn .

However, care must be taken to avoid local minimum that can be present because of

the highly non-convex ||x||0 term. The general strategy is to prescribe a decreasing

sequence of σ’s and solve the above for each σ in a successively, reusing the previous

solution as the initial guess for the new one.

The `0 methods mentioned above are introduced to show the similarity between the

classes of methods for `0 and `1 problems. The performance of the above schemes

however, depends rather strongly on tight RIP bounds of A. Thus, they will not

work well for the matrix in our application which does not satisfy such bounds.

One approach is to perform first `1 minimization and then switch to `0. The IRLS

algorithms discussed in a later section provide a way to easily and gradually switch

from convex to nonconvex optimization and are likely to be more successful for not

well conditioned systems; avoiding the sharp switch.

2.10 Chapter Remarks and Conclusions

This chapter serves as a mathematical introduction into the rest of the thesis and

places its contents into place inside a larger theme: the regularization of large scale

inverse problems with sparsity constraints for not well-conditioned and noisy systems

arising from physical inverse problems. The chapter described why regularization is

necessary, gave an introduction to sparsity, the `0 and `1 functionals that are mini-

mized to get sparse solutions and then gave several categories of methods for treating

the convex `1 functional followed by a short discussion on `0. We saw several different

ways to deal with the `1 functional: directly treating the non-smooth term via soft

59

thresholding, the dual space approach, splitting methods, approximating the smooth

term by a differentiable function, and minimization by a coordinate wise method. The

next two chapters describe new material and are extensions of ideas presented here,

presented with detailed convergence arguments. First, we discuss an alternative to

the simple ISTA scheme, that while having the same form, uses a different threshold-

ing function and exhibits more promising numerical performance. Next, we introduce

two new methods based on the iteratively reweighted least squares approach, where

we replace the non-smooth portion of the sparsity promoting functional by a smooth

approximation. We also generalize the functional we are minimizing, introducing a

more general sparsity promoting penalty.

60

Chapter 3

AN ALTERNATIVE TO SOFT

THRESHOLDING: A NEW

SPARSITY-TARGETING

VARIABLE THRESHOLDING

ALGORITHM

3.1 Overview

In the previous chapter, we saw that direct minimization of the `1 functional

||Ax − b||22 + 2τ ||x||1 leads to the use of the soft thresholding operator Sτ (x). We

saw also that the soft thresholding operator has the property that it penalizes even

the large entries of the vector x. In this chapter we introduce an algorithm (IVTA)

and its correspoding fast version (FIVTA) which uses a different thresholding func-

tion that does not have this property. The motivation for the new algorithms comes

from considering the performance of the soft-thresholding algorithms at different reg-

61

ularization parameters τ . The figure below shows the decrease versus iteration of

||xn − xn−1||2 at two different regularization parameters τ with the FISTA scheme,

for a sparse input:

SVDs of A SPARSE SIGNAL X

50 100 150 200
0

20

40

60

80

||xn − xn1|| with LARGE/SMALL TAU

LARGE
SMALL

Figure 3.1: Left: distribution of matrix singular values. Center: sparse input vector.

Right: ||xn − xn−1||2 versus iteration at τ = ||AT b||∞
3

and τ = ||AT b||∞
30000

.

We observe that ||xn−xn−1||2 is decreased substantially faster at the higher τ . Hence,

we expect (and observe in practice) that the convergence is faster at a higher param-

eter τ . On the other hand, the regularization parameter is typically chosen in order

to obtain a given end residual value ||Axτ − b||2 where xτ is the solution of the algo-

rithm obtained at the specified τ . Thus, of numerical interest, would be an algorithm

which produces the same residual ||Ax− b||2 value at a higher τ as compared to soft

thresholding. At this higher τ the numerical convergence would then be faster.

As motivation, we take the results from the work in [29]. There, a two-step

procedure was considered to lower the residual value, in which one first finds the

minimizer x̃ of ‖Ax− b‖2
2 + τ‖x‖1 , and then repeats the procedure after substituting

b̃ = 2b − Ax̃ for b, thus “adding on to” b an extra piece to protect against the

shrinkage in the soft thresholding. In the case where A is the identity operator,

x̃ = S τ
2
(b) and one easily checks that the end result S̃ τ

2
(b) of the two-step procedure

(i.e. S̃ τ
2
(b) = arg minx

(
||x− (b+ (b− S τ

2
(b)))||+ τ ||x||1

)
= S τ

2
(2b − S τ

2
(b))) is given

62

by

S̃τ (b)k =

bk |bk| ≥ τ,

sign(bk) (2|bk| − τ) τ ≥ |bk| ≥ τ/2,

0 |bk| ≤ τ/2.

(3.1.1)

We see that the above operator S̃τ does not penalize the large entries (those bigger

in absolute magnitude than τ). For this reason (and because in [29] the two-step

approach was shown to have numerical advantages), it seems plausible to construct

an algorithm similar to ISTA, that is based around a different thresholding function

with the above property, in the hope that it would lead to a decrease of the final

residual value ||Ax − b||2 at the same τ compared to soft thresholding. This is the

subject of this chapter. Just like in the case of FISTA for ISTA, a corresponding

fast version of the algorithm is also posed. What follows is largely taken from the

published paper [43] on this work.

63

3.2 Firm Thresholding

This operation S̃τ , intermediate between soft and hard thresholding (see Fig. 1), is

called “firm” thresholding (see e.g. [22] and [14]).

soft thresholding hard thresholding firm thresholding

The firm thresholding operator S̃τ is continuous in parameter τ and does not

shrink large entries, as desired. It may be of interest, in comparing soft, firm and

hard thresholding, to note the results in [14]. There in a rigorous study of phase

transitions in the behavior of limits for different iterative thresholding algorithms, as

a function of the parameters in the problem, it is shown that firm thresholding has

a phase transition threshold that is strictly better than that of soft thresholding. No

such result is available for iterative hard thresholding.

In [29] it was observed that, for a toy problem inspired by seismography, the so-

lution of the two-step procedure described above, now for an operator A representing

the effect of scattering through a multi-layered Earth model on seismic waves, led to a

better, “more physical” solution of the original problem. For the large scale problems

towards which the study in [29] provided a warm up, it would be (computationally)

costly to systematically carry out the iterative solution procedure twice. In this pa-

per we investigate a direct approach to achieve a similar goal, without this costly

second iteration. This direct approach makes use of firm thresholding, and leads to a

non-convex weight function (which will be equal to h τ
2
,τ , in the notation we introduce

64

below), which has the advantage that minimization using this weight function leaves

sufficiently large entries untouched, as opposed to soft-thresholding.

The non-convexity of the functional corresponding to firm thresholding, means

that minimization of the functional via an iterative procedure, starting from some

initial x0, gives no guarantees that the limit provides a global (as opposed to a local)

minimizer. Worse, the very feature that the minimization of the new functional does

not affect, ultimately, sufficiently large entries in its minimizer, means that, unless

the iteration is set up carefully, the whole procedure can fail to be regularizing, and

may, for certain initial data b, lead to non-converging sequences (xn)n∈N. In addition,

it is easy to set up situations where simply minimizing h τ
2
,τ , leaving the large entries

unchanged, leads to highly non-sparse solutions, thus defeating our purpose.

For these reasons we propose a hybrid approach, in which we switch from soft

thresholding to firm thresholding when the iterate becomes increasingly sparse. In fact

we have a more gradual approach. We start with soft thresholding (which corresponds

to weight function hτ,τ in our notation) and when the sparsity increases we use a

weight function hρ,τ ,
τ
2
≤ ρ ≤ τ , where ρ is determined by the sparsity of the current

iterate; the weight function becomes h τ
2
,τ when the signal has a close to expected level

of sparsity. To guard against non-termination we have to introduce an auxiliary term

to make sure that when we switch weight functions there is still an overall quantity

that we are reducing in each step. Next, to obtain boundedness of the sequence of

iterates we have to restrict the use of the weight function h τ
2
,τ to when the iterate xn

is assured to satisfy ‖Axn‖ ≥ s‖xn‖, for some s > 0. This is done by assuming that

for sufficiently sparse signals x, the matrix A satisfies ‖Ax‖ ≥ s‖x‖. In other words,

we only allow the use of the weight function h τ
2
,τ when the number of nonzero entries

in the iterate x is below the spark of the matrix A. Recall from [17] that the spark of

a matrix A is the smallest number of linearly dependent columns in the matrix.

65

This paper is organized as follows. In Section 2 we discuss the different weight

functions. In Section 3 we introduce the new algorithm and we show its termination.

In Section 4 we present numerical results.

3.3 Weight functions

Proposition 3.3.1. Let 0 < τ
2
≤ ρ ≤ τ , and define the function hρ,τ : R → [0,∞)

via

hρ,τ (x) =

 (4ρ− 2τ)|x|+ 2(τ − ρ)2, |x| ≥ 2(τ − ρ);

−1
2
x2 + 2ρ|x|, |x| < 2(τ − ρ).

(3.3.1)

Put

Sρ,τ (a) = argminx∈R(x− a)2 + hρ,τ (x). (3.3.2)

Then

Sρ,τ (a) =

a− (2ρ− τ), a ≥ τ ;

2(a− ρ), ρ < a < τ ;

0, −ρ ≤ a ≤ ρ;

2(a+ ρ), −τ < a < −ρ ;

a+ (2ρ− τ), a ≤ −τ .

(3.3.3)

Notice that

|Sρ,τ (a)| ≤ |a| (3.3.4)

for all a ∈ R, and all 0 < τ
2
≤ ρ ≤ τ . In addition, note that when ρ = τ

2
then

Sρ,τ (a) = a for |a| ≥ τ , while for any other ρ, Sρ,τ (a) 6= a when a 6= 0. Thus when

the larger entries are likely to be the correct value it is advantageous to take ρ = τ
2
.

Proof. Let f(x) = (x− a)2 + (4ρ− 2τ)x+ 2(τ − ρ)2 and g(x) = (x− a)2− 1
2
x2 + 2ρx.

Then f ′(x) = 0 if and only if x = a−(2ρ−τ) and g′(x) = 0 if and only if x = 2(a−ρ).

Notice that a− (2ρ− τ) ≥ 2(ρ− τ) if and only if a ≥ τ , and 0 < 2(a−ρ) < 2(τ −ρ) if

66

and only if ρ < a < τ . Next, one needs to compare the values at the different critical

points. E.g., when a ≥ τ , one computes that

f(a− (2ρ− τ)) = (2ρ− τ)2 + 2(a− (2ρ− τ))(2ρ− τ) + 2(ρ− τ)2

= a2 − (a− (2ρ− τ)2) + 2(τ − ρ)2

≤ a2 − (τ − (2ρ− τ))2 + 4(τ − ρ)2 = a2

where the latter is the value at 0 of (x− a)2 + hρ,τ (x).

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.02

0.04

0.06

0.08

0.1

0.12

1

2

3

4

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 3.2: Left: hρ,τ (x) for ρ = 0.5, 0.55, 0.65, 0.75 of τ . Right: Sρ,τ (x) for ρ = 0.75τ .

In the following we shall allow vectors x as the argument of hρ,τ and Sρ,τ . With

an abuse of notation, we define for x ∈ RN ,

hρ,τ (x) =
N∑
i=1

hρ,τ (xi) ∈ R, Sρ,τ (x) = (Sρ,τ (xi))Ni=1 ∈ RN .

Next, let us describe the fixed points of the mapping x 7→ Sρ,τ (x + A∗(b − Ax)).

This mapping will be used in the algorithm in the next section, and the convergence

result leads to a fixed point of this mapping. As usual we denote ||x||∞ = maxi|xi|.

Proposition 3.3.2. Let A ∈ Rm×N and b ∈ Rm. Suppose x ∈ RN satisfies x =

Sρ,τ (x+ A∗(b− Ax)). Then

• xi = 0⇒ |(A∗(b− Ax))i| < ρ,

67

• 0 < xi ≤ 2(τ − ρ)⇒ xi = 2ρ− 2(A∗(b− Ax))i,

• xi ≥ 2(τ − ρ)⇒ (A∗(b− Ax))i = 2ρ− τ,

• −2(τ − ρ) ≤ xi < 0⇒ xi = 2ρ− 2(A∗(b− Ax))i,

• xi ≤ −2(τ − ρ)⇒ (A∗(b− Ax))i = −(2ρ− τ).

In addition, if ρ ≥ ||A∗b||∞ then x = 0 satisfies x = Sρ,τ (x+ A∗(b− Ax)).

Proof. Proof is by direct verification.

68

3.4 Iterative Varied Thresholding Algorithm

Let A be an m×N real matrix, and b a vector in Rm. We seek a sparse vector x so

that

‖Ax− b‖

is small. In our algorithm we will use the weight function hρ,τ with different ρ’s

and τ ’s. As the proposed algorithm is a variation on the iterative soft-thresholding

algorithm (ISTA) where now the thresholding function changes based on the sparsity

level of the iterate. We will call our algorithm the Iterative Varied Thresholding

Algorithm (IVTA). We start with explaining how to proceed when a value for τ has

been chosen. The algorithm is given below:

69

Algorithm 1: IVTA for Sparse Signal Recovery

Input : An m×N matrix A and a vector b ∈ Rm, a leverage L, tolerance ε,
an estimated sparsity level K, and an initial guess x0.

Output: An estimate x̂ ∈ RN of the signal x

i← 0;
ρ0 ← τ ;
K0 ← N

5
;

L0 ← L;
a← 0;

begin
xi+1 ← Sρi,τ (xi + A∗b− A∗Axi);
if ‖xi − xi+1‖ ≤ ε then

break
end
Ki+1 ← nnz(xi+1);

σ ← τ
2
(1 + max(Ki+1−K0,a)

N−K0
);

if σ ≤ ρi then
Li+1 ← Li, ρi+1 ← σ

else
Li+1 ← Li + hρi,τ (x

i+1)− hσ,τ (xi+1)

if Li+1 ≥ 0 then
ρi+1 ← σ

else
ρi+1 ← max(ρi,

τ
2
(1 + 1

N−K0
)), a← 1

end
end
i← i+ 1;

end
x̂← x(i)

The algorithm uses the following constants:

ε: the iteration at a given τ stops when ‖xi − xi+1‖ ≤ ε;

K: Estimate for the number of nonzeros of the signal. If the iterate becomes

K-sparse, the weight function h τ
2
,τ is used. This choice does not fix or bound the

number of nonzero entries in the final solution.

L: a ‘leverage’ or safety margin. Indeed, it is conceivable that, by a fluke, a

very sparse iterate occurs that is not close to the actual solution x. If that happens,

we expect a later iterate to be less sparse, to which the algorithm will respond by

70

increasing ρ. This increase in ρ causes a corresponding increase in hρ,τ (x
i). If this can

happen unchecked, then it can spoil convergence. The leverage quantity L is defined

to keep track of this: if the sum of all the increases of hρ,τ (x
i), due to increases in ρ,

exceeds a certain ceiling (the initial value of L), then we will not allow ρ to increase

in any of the further iterations steps, so that from then on, hρ,τ (x
i) can only decrease.

With this restriction in place, the number of nonzero entries of later iterates may

exceed K; on the other hand, when ρ = τ
2

convergence is guaranteed only if the

number of nonzeros does not exceed K. To ensure convergence we therefore also put

in place (via the parameter a) a lower bound on ρ that is strictly larger than τ
2
, as

soon as L < 0 has occurred. (In practice, this safety valve in the algorithm turns out

not to be activated, for the applications we considered.)

We now prove through a series of propositions that the algorithm terminates. Let

us start by defining:

FL,ρ(x) = ‖Ax− b‖2 + hρ,τ (x) + L, (3.4.1)

GL,ρ(x; x̃) = FL,ρ(x) + 〈(I − A∗A)(x− x̃), x− x̃〉. (3.4.2)

Lemma 3.4.1. GL,ρn(xn+1, xn) ≤ GL,ρn(xn, xn).

Proof. Consider that Sρ,τ (a) = arg minx(x− a)2 + hρ,τ (x) and that

xn+1 = Sρn,τ (xn + (A∗b)− (A∗Axn)) = Sρn,τ (yn), where yn = xn + (A∗b)− (A∗Axn).

This implies that xn+1 = arg minx ||x− yn||2 + hρn,τ (x). Consequently:

||xn+1 − yn||2 + hρn,τ (x
n+1) ≤ ||xn − yn||2 + hρn,τ (x

n).

Plugging in yn = xn + (A∗b)− (A∗Axn) we get:

||xn+1 − xn||2 − 2〈xn+1 − xn, A∗(b− Axn)〉+ hρn,τ (x
n+1) ≤ hρn,τ (x

n).

71

Next,

GL,ρn(xn, xn) = ||Axn − b||22 + hρn,τ (x
n) + L,

GL,ρn(xn+1, xn) = ||Axn+1 − b||22 + ||xn+1 − xn||22 − ||A(xn+1 − xn)||22 + hρn,τ (x
n+1) + L

= ||Axn − b||22 − 2〈xn+1 − xn, A∗(b− Axn)〉+ hρn,τ (x
n+1) + L

≤ ||Axn − b||22 + hρn,τ (x
n)− ||xn+1 − xn||22 + L

≤ GL,ρn(xn, xn),

and the result follows.

Lemma 3.4.2. For ρ1 ≥ ρ2 ∈ [τ
2
, τ] we have hρ1,τ (x) ≥ hρ2,τ (x).

Proof. Fix any x ∈ R. Depending on the value of x, we have three cases to consider

for the functions h. Consider first |x| ≥ 2(τ − ρ2) > 2(τ − ρ1):

hρ1,τ (x) = (4ρ1 − 2τ)|x|+ 2(τ − ρ1)2 and hρ2,τ (x) = (4ρ2 − 2τ)|x|+ 2(τ − ρ2)2.

Then

hρ1,τ (x)− hρ2,τ (x) = 4(ρ1 − ρ2)|x|+ 2(ρ2
1 − 2τρ1 − ρ2

2 + 2τρ2)

= 4(ρ1 − ρ2)|x|+ 2(ρ1 − ρ2)(ρ1 + ρ2 − 2τ)

= 2(ρ1 − ρ2)(2|x|+ ρ1 + ρ2 − 2τ).

Now, |x| ≥ 2(τ − ρ2) yields that 1
2
|x| ≥ τ − ρ2 and |x| ≥ 2(τ − ρ1) yields that

1
2
|x| ≥ τ − ρ1 so that |x| ≥ 2τ − ρ1 − ρ2. So this means ρ1 + ρ2 − τ ≥ −|x| and so

2(ρ1 − ρ2)(2|x|+ ρ1 + ρ2 − 2τ) ≥ 0, which implies that hρ1,τ (x) ≥ hρ2,τ (x).

72

Next consider the case 2(τ − ρ1) ≤ |x| < 2(τ − ρ2). In this case:

hρ1,τ (x) = (4ρ1 − 2τ)|x|+ 2(τ − ρ1)2 and hρ2,τ (x) = −1

2
x2 + 2ρ2|x|.

Then

hρ1,τ (x)− hρ2,τ (x) = (4ρ1 − 2τ)|x|+ 2(τ − ρ1)2 +
1

2
x2 − 2ρ2|x|

= (4ρ1 − 2ρ2 − 2τ)|x|+ 1

2

(
4(τ − ρ1)2 + x2

)
.

Now, by the arithmetic/geometric mean inequality: p+q
2
≥ √pq for p, q ≥ 0, we obtain

1

2

(
4(τ − ρ1)2 + x2

)
≥
√

4(τ − ρ1)2x2.

So

hρ1,τ (x)− hρ2,τ (x) = (4ρ1 − 2ρ2 − 2τ)|x|+ 1

2

(
4(τ − ρ1)2 + x2

)
≥ (4ρ1 − 2ρ2 − 2τ)|x|+

√
4(τ − ρ1)2x2

= (4ρ1 − 2ρ2 − 2τ)|x|+ 2(τ − ρ1)|x| = (4ρ1 − 2ρ2 − 2τ + 2τ − 2ρ1)|x| = 2(ρ1 − ρ2)|x| ≥ 0.

So that in this case, hρ1,τ (x) ≥ hρ2,τ (x) as well.

Finally, consider the case |x| < 2(τ − ρ1) < 2(τ − ρ2). Then

hρ1,τ (x) = −1

2
x2 + 2ρ1|x| and hρ2,τ (x) = −1

2
x2 + 2ρ2|x|,

and thus

hρ1,τ (x)− hρ2,τ (x) = 2(ρ1 − ρ2)|x| ≥ 0.

So in all the possible cases, hρ1,τ (x) ≥ hρ2,τ (x).

73

Using the above two lemmas we are ready now to prove convergence.

Proposition 3.4.3. Let ‖A‖ < 1. The above iteration yields that ‖xn+1 − xn‖ → 0

as n→∞.

Proof. Notice that in the algorithm it can happen that the number a will remain 0

all the time, or that it gets set to 1. In the latter case we will from then on have

that ρ will no longer increase and the L will no longer play a role. This case when

ρn ≥ ρn+1 will be covered under a = 0 case, so for the remainder we will assume that

a remains 0, which means that all Ln are nonnegative.

We will show that for all n we have that

(1− ‖A‖2)‖xn − xn+1‖2 ≤ FLn,ρn(xn)− FLn+1,ρn+1(x
n+1). (3.4.3)

There are two cases, one where L remains unchanged from one iteration to the next,

and one where L changes value. In the first case, Ln = Ln+1, which implies that

ρn ≥ ρn+1. Then we get that:

FLn,ρn(xn) = GLn,ρn(xn;xn) ≥ GLn,ρn(xn+1;xn)

= FLn,ρn(xn+1) + 〈(I − A∗A)(xn − xn+1), xn − xn+1〉

≥ FLn+1,ρn+1(x
n+1) + (1− ‖A‖2)‖xn − xn+1‖2

≥ FLn+1,ρn+1(x
n+1),

where in the first inequality we used Lemma 3.4.2 and that Ln = Ln+1. Next, let us

consider the case when L changes value. In that case we have that

Ln+1 = Ln + hρn,τ (x
n+1)− hρn+1,τ (x

n+1). (3.4.4)

74

But then we get that:

FLn,ρn(xn) = GLn,ρn(xn;xn) ≥ GLn,ρn(xn+1;xn)

= FLn,ρn(xn+1) + 〈(I − A∗A)(xn − xn+1), xn − xn+1〉

= FLn+1,ρn(xn+1) + 〈(I − A∗A)(xn − xn+1), xn − xn+1〉

≥ FLn+1,ρn+1(x
n+1) + (1− ‖A‖2)‖xn − xn+1‖2

≥ FLn+1,ρn+1(x
n+1).

This establishes the proof of (3.4.3).

From (3.4.3) we now get that

(1− ‖A‖2)

p∑
n=0

‖xn+1 − xn‖2 ≤ FL0,ρ0(x0)− FLn+1,ρn+1(xn+1) ≤ FL0,ρ0(x0).

As 1− ‖A‖2 > 0, we get that
∑∞

n=0 ‖xn+1 − xn‖2 converges, and thus we must have

that ‖xn+1 − xn‖ converges to 0 as n→∞.

It should be noticed that the function hρ,τ for ρ = τ
2

flattens out. Therefore,

boundedness of hρ,τ (x
n) does not imply that (xn)n is bounded. Still, using this func-

tion has the advantage that optimizing over it leaves certain entries of x fixed. This

is useful when one starts approaching the true solution. Our algorithm is set up so

that ρ reaches the value τ
2

when the number of nonzero entries in xn is below a given

constant K. We can show convergence when K is chosen in such a way so that no K

columns in A are linearly dependent; that is, we choose K < spark(A). First consider

the following example.

Example 3.4.4. Let A be so that its kernel contains a vector z with all nonzero

entries. Let v and b be so that Av = b. Choose R ∈ R so that all entries in

75

x0 = v +Rz have absolute value larger than τ . Then one easily checks that

x1 := S τ
2
,τ (x

0 + A∗(b− Ax0)) = S τ
2
,τ (x0) = x0,

so that an iteration scheme

xn+1 = S τ
2
,τ (x

n + A∗(b− Axn))

would not lead to a desired sparse solution.

Introduce for A ∈ Rm×N and 1 ≤ p ≤ N , the number

s(A; p) = min
|X|=p

sp(A|X),

where X ranges over all subsets of {1, . . . , N} with cardinality p, A|X stands for the

n× p matrix obtained from A by omitting all columns except the ones indexed by X,

and sp denotes the pth singular value (where s1 is the largest singular value).

Lemma 3.4.5. Let A ∈ Rm×N be a contraction, and 1 ≤ p ≤ N . Put s = s(A; p).

Let x be a vector with at most p nonzero entries. Then

‖(I − A∗A)x‖ ≤
√

1− s2‖x‖. (3.4.5)

Proof. Let X have cardinality p so that the support of the vector x lies in X. Let

x̃ ∈ Rp consist of the components of x indexed by X. Then

‖(I − A∗A)1/2x‖2 = 〈(IN − A∗A)x, x〉

= 〈(Ip − (A|X)∗(A|X))x̃, x̃〉

≤ (1− s2)‖x̃‖2

= (1− s2)‖x‖2.

76

And thus

‖(I − A∗A)x‖ ≤ ‖(I − A∗A)1/2‖‖(I − A∗A)1/2x‖ ≤
√

1− s2‖x‖,

as ‖(I − A∗A)1/2‖ ≤ 1.

We now have the following key result.

Theorem 3.4.6. Let A ∈ Rm×N be a strict contraction, and let 0 ≤ K ≤ N be

chosen so that

s := s(A,K) > 0. (3.4.6)

Then Algorithm 1 produces a bounded sequence (xn)n∈N.

Proof. For the same reason as in the proof of Proposition 3.4.3 we will go by the

assumption that the value for a remains 0. Indeed, if a is set to equal 1 at some

point, we will have that from then on ρn ≥ r, where r = τ
2
(1 + 1

N
). This case will be

covered below. So let us assume that a = 0 throughout.

First observe that there exists an M so that

hr,τ (x) ≤ FL0,ρ0(x
0)

implies that ‖x‖ ≤ M . Indeed, since r > τ
2
, we have that hr,τ (x)→∞ as ‖x‖ → ∞.

As hρ,τ (x) ≥ hr,τ when ρ ≥ r, we also get for such ρ that hρ,τ (x) ≤ FL0,ρ0(x
0) implies

that ‖x‖ ≤M .

We have two cases in the algorithm to consider: ρn ≥ r and ρn = τ
2
.

The latter only occurs when xn has at most K nonzero entries. We will show that

in either case

‖xn‖ ≤ R +
√

1− s2‖xn−1‖, (3.4.7)

where R = max{M, ‖A∗b‖}.

77

First suppose that ρn ≥ r. From the proof of Proposition 3.4.3 we have that

hρn(xn) ≤ FLn,ρn(xn) ≤ FL0,ρ0(x
0),

and thus, by the definition of M , we have that

‖xn‖ ≤M ≤ R ≤ R +
√

1− s2‖xn−1‖.

Next, when ρn < r we must have that ρn = τ
2

and that xn has at most K nonzero

entries. Using the definition of xn+1 and inequality (3.3.4) we have that

|(xn+1)p| ≤ |(xn + A∗(b− Axn))p|, p = 1, . . . , N.

Thus, by using (3.4.5), we get

‖xn+1‖ ≤ ‖xn + A∗(b− Axn)‖

≤ ‖A∗b‖+ ‖(I − A∗A)xn‖

≤ R +
√

1− s2‖xn‖,

proving (3.4.7) in this case as well.

Now, using (3.4.7) repeatedly, we get

‖xn‖ ≤ R +
√

1− s2‖xn−1‖

≤ R +
√

1− s2(R +
√

1− s2‖xn−2‖)

≤ · · · ≤ R

n∑
p=0

(
√

1− s2)p

≤ R

1−
√

1− s2
,

yielding the desired boundedness.

78

In general we cannot guarantee a unique solution, but even in the more classical

case with `1 minimization this can not be expected when A has a kernel (the typical

case). E.g., when

A =

1 1

1 1

 , b =

1

1

 ,

any x =

(
a b

)T
with a and b nonnegative and a+ b = 1 yields an optimal solution

under `1 minimization. We can, however, guarantee the following.

Proposition 3.4.7. The sequence (xn) constructed above has limit points x satisfying

x = Sρ,τ (x+ A∗(b− Ax)) for some τ
2
≤ ρ ≤ τ .

Proof. The sequence is bounded and therefore it has a convergent subsequence (xnk)k,

say, with limit x, say. As limn→∞ ‖xn − xn+1‖ = 0, we get that limk→∞ x
nk+1 = x.

Next, we have that

xnk+1 = Sρnk+1,τ (x
nk + A∗(b− Axnk)).

As the values for ρn lie in a finite set, infinitely many of {ρnk+1}k are the same,

equaling ρ, say. But then there is a subsequence xmk so that for all k

xmk+1 = Sρ,τ (xmk + A∗(b− Axmk)).

Taking the limit on both sides yields x = Sρ,τ (x+ A∗(b− Ax)).

Note that the above proposition implies that the algorithm is not gauranteed to

minimize any specific function, since ρ is not fixed throughout the iteration but varies

with the sparsity of the sucessive iterates, decreasing from ρ = τ (soft thresholding) to

the minimum value just above τ
2
. Since hρ,τ (x) is not convex for ρ < τ , this behavior

79

helps the algorithm avoid local minima in the nonconvex functional ||Ax−b||22+hρ,τ (x).

Assuming an infinite number of iterations, the IVTA algorithm will stop at a local

minimum of this functional for ρ = limn→∞ ρn (which will vary depending on the

input, but will always be in the range (τ
2
, τ)).

3.5 Numerical Experiments

In this section, we present some simple numerical examples to test the performance of

our algorithm. As in the case of the iterative soft-thresholding scheme xn+1 = Sτ (xn+

A∗b− A∗Axn), the IVTA step xn+1 = Sρn,τ (xn + A∗b− A∗Axn) has a corresponding

accelerated version, which we term FIVTA, based on the idea of the FISTA speedup

(introduced in [2] based on the work of Nesterov [32]):

y0 = x0, xn = Sρn,τ (yn + A∗(b− Ayn)),

yn+1 = xn +
tn − 1

tn+1

(xn − xn−1),

where tn is a sequence of numbers, generated by: tn+1 =
1+
√

1+4t2n
2

and t1 = 1. We

have tested both the IVTA and FIVTA scheme and found FIVTA to have similar

advantages over IVTA as FISTA has over ISTA (see [2]). Consequently we have

chosen to use FIVTA in all of our comparisons. We note here that other choices

of numerical schemes are possible. For instance, we found that we could apply the

monotone version of FISTA to IVTA ([1]). This results in a slightly updated scheme:

y0 = x0, zn = Sρn,τ (yn + A∗(b− Ayn)), xn = arg min
x

(
F (x) : x = zn, x = xn−1

)
,

yn+1 = xn +
tn
tn+1

(zn − xn) +
tn − 1

tn+1

(xn − xn−1),

80

with F (x) = ||Ax − b||22 + h τ
2
,τ (x). We find that this scheme sometimes converges

faster. Finally the two-step overrelaxation acceleration followed by hard thresholding

as proposed in [3] also looks promising. Below, we only use the FIVTA scheme for

comparisons, but different variants are possible.

We will test our algorithm in the setting of a sparse recovery problem where noise

is present. In such a problem one has an estimate of the noise level in the observations

b and one looks for a solution x for which ||Ax− b|| is at this noise level. This leads

to a criterion for choosing a proper parameter τ since every choice of τ leads to

a particular value of ||Axτ − b|| where xτ represents the solution of the algorithm

obtained at that τ . Thus, the approach consists of two steps: preliminary runs to

identify the right τ and a longer run at the proper τ to find the desired solution up

to some convergence criterion such as ||x
n+1−xn||
||xn|| < ε.

For identifying the preferred parameter τ , the most efficient choice turns out to

be a simple scheme where we proceed down from the choice of τ = ||A∗b||∞ running

the algorithm for a few iterations at each τ starting from the previous solution as the

initial guess. Given A and b define

τmax = ||A∗b||∞.

The update of τ is based on two constants C and Nτ which in our case we chose to

be 5000 and 20. After this choice we set

τmin =
||A∗b||∞

C

τstep =
log(τmax)− log(τmin)

Nτ − 1
.

Starting at τ = τmax we iterate according to one of the above schemes (IVTA or

FIVTA). After convergence, we update τ to equal exp(τ − τstep) and we use the

81

solution at previous τ as the starting guess for the new iteration. The choice of τmax

is based on the last observation in Proposition 3.3.2 and the optimality condition for

`1 optimization. In the later, we have x = 0 for τ ≥ ||A∗b||∞ and for FIVTA we expect

x = 0 for τ ≥ 2||A∗b||∞, although we find that starting at τ = ||A∗b||∞ is sufficient

if a low enough ||Ax − b|| value is ultimately desired. The number Nτ represents

the total number of different parameters τ . The benefit for the use of such a scheme

versus a more complicated binary search approach is that the solutions at adjacent

τ are similar and once one has been obtained, starting with that as the initial guess

quickly gives the solution at the next τ . Hence, the residual level at each τ can be

identified relatively quickly using this scheme, and a hundred iterations or so at each

τ is generally sufficient.

Once the right τ has been identified, a longer run is performed at this given τ .

This is where the advantage of FIVTA manifests itself, since the convergence at the

right τ is often significantly faster than for soft thresholding methods. This is because

we are able to get a more appropriate solution with a lower ||Axτ − b|| value at a

higher parameter τ with FIVTA than with FISTA. The general property of the various

available thresholding schemes is that convergence becomes slow for small parameter

τ . Consequently, it is desirable to have a lower value for ||Axτ − b|| at a higher τ

so that the noise level matching solution can be obtained more accurately in fewer

iterations.

We describe how we construct the test cases for our numerical experiments below.

First, the non-zero entries of the vector x are picked, with some degree of randomness,

according to the specifications of the example. Next, the matrix A is constructed by

generating a random unitary m × m matrix U , a random unitary N × N matrix

of which the first m rows are retained, giving the m × N matrix V , and setting

A := U ·D · V , where D is a diagonal m×m matrix, the diagonal elements of which

are given by the singular value distribution for A pre-assigned in the example. Finally,

82

random i.i.d. white noise of the prescribed variance or norm is added to the vector

Ax, to define the “data vector” b := Ax+ noise.

Now we describe the experiments. Experiment set 1 illustrates that FIVTA con-

verges faster than FISTA at the noise matching τ . In fact this τ is also faster to

find since it’s closer to the maximum value of ||A∗b||∞. This is illustrated for differ-

ently conditioned examples. Experiment set 2 illustrates what happens when different

properties of the linear system are varied: the number of nonzeros, the noise in b,

the uncertainty in A. We see similar or in some cases even better performance to

that of FISTA. Experiment set 3 shows that in cases where the right τ cannot be

accurately determined, FIVTA often does better, since we have reconstructions with

lower ||Axτ − b|| value, by taking a randomly chosen τ below ||A∗b||∞. If we simply

want to do a single run to estimate the solution, then it is advisable to use FIVTA

at a reasonably high τ . In experiment set 4, we show that the knowledge of the

true number of nonzeros in the unknown signal x is not essential to FIVTA. A rough

estimate is enough, as long as the number of nonzeros is not too large. Finally we

illustrate a simple example of image denoising, useful for images that are sparsely

represented in the wavelet domain.

83

0

20

40

60

80

100

SVDS

−1

−0.5

0

0.5

1

INPUT

0

1

2

3

4
RESIDUALS VS TAU

parameter values

||
A

x
 −

 b
||

1
2
N

0.5 1 1.5 2 2.5
0

20

40

60

80

100

PERCENT ERRORS

0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

NUM ITERATIONS

0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

RUNTIMES

0

20

40

60

80

100

SVDS

−50

0

50

INPUT

0

50

100

150

200

250
RESIDUALS VS TAU

parameter values

||
A

x
 −

 b
||

1
2
N

0.5 1 1.5 2 2.5
0

20

40

60

80

100

PERCENT ERRORS

0.5 1 1.5 2 2.5
0

200

400

600

800

1000

NUM ITERATIONS

0.5 1 1.5 2 2.5
0

0.5

1

1.5

RUNTIMES

0

500

1000

1500

2000

2500

3000

SVDS

−50

0

50

INPUT

0

50

100

150
RESIDUALS VS TAU

parameter values

||
A

x
 −

 b
||

1
2
N

0.5 1 1.5 2 2.5
0

20

40

60

80

100

PERCENT ERRORS

0.5 1 1.5 2 2.5
0

2000

4000

6000

8000

10000

NUM ITERATIONS

0.5 1 1.5 2 2.5
0

2

4

6

8

10

12

RUNTIMES

0

500

1000

1500

2000

2500

3000

SVDS

−1

−0.5

0

0.5

1

INPUT

0

0.5

1

1.5

2
RESIDUALS VS TAU

parameter values

||
A

x
 −

 b
||

1
2
N

0.5 1 1.5 2 2.5
0

20

40

60

80

100

PERCENT ERRORS

0.5 1 1.5 2 2.5
0

500

1000

1500

2000

2500

3000

NUM ITERATIONS

0.5 1 1.5 2 2.5
0

1

2

3

4

5

RUNTIMES

0

500

1000

1500

2000

2500

3000

SVDS

−50

0

50

INPUT

0

20

40

60

80

100

120
RESIDUALS VS TAU

parameter values

||
A

x
 −

 b
||

1
2
N

0.5 1 1.5 2 2.5
0

20

40

60

80

100

PERCENT ERRORS

0.5 1 1.5 2 2.5
0

1000

2000

3000

4000

NUM ITERATIONS

0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

RUNTIMES

Figure 3.3: Experiments 1: svds, input, ||Axτ − b|| vs parameter, percent errors,
number of iterations and runtimes at the noise matching parameter for FISTA (1)
and FIVTA (2) for several examples. We observe that in all the examples, FIVTA
matches the noise level residual ||Axτ − b|| at a higher τ than FISTA which leads to
faster convergence at that parameter.

84

Algorithm 2: FIVTA for Sparse Signal Recovery

Input : An m×N matrix A and a vector b ∈ Rm, a leverage L, tolerance ε,
an estimated sparsity level K, and an initial guess x0.

Output: An estimate x̂ ∈ RN of the signal x

i← 0;
ρ0 ← τ ;
K0 ← N

5
;

L0 ← K0||A∗b||1;
a← 0;

begin
if i = 1 then

xi+1 ← Sρi,τ (xi + A∗b− A∗Axi);
end
else

yi+1 = xi + ti−1
ti+1

(xi − xi−1);

xi+1 ← Sρi,τ (yi + A∗b− A∗Ayi)
end
if ‖xi − xi+1‖ ≤ ε then

break
end
Ki+1 ← nnz(xi+1);

σ ← τ
2
(1 + max(Ki+1−K0,a)

N−K0
);

if σ ≤ ρi then
Li+1 ← Li, ρi+1 ← σ

end
else

Li+1 ← Li + hρi,τ (x
i+1)− hσ,τ (xi+1)

if Li+1 ≥ 0 then
ρi+1 ← σ

end
else

ρi+1 ← max(ρi,
τ
2
(1 + 1

N−K0
)), a← 1

end
end
i← i+ 1;

end
x̂← x(i)

85

0

5

10

15

ELAPSED TIME

matrix size

1

2

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

5

10

15

20

25

30

ELAPSED TIME SUMS

0

20

40

60

80

100

PERCENT ERRORS

matrix size

1

2

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

20

40

60

80

100

120

140

PERCENT ERROR SUMS

0

10

20

30

40

50

ELAPSED TIME

num nnz

1

2

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

50

100

150

200

250

300

350

ELAPSED TIME SUMS

0

20

40

60

80

100

PERCENT ERRORS

num nnz

1

2

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

50

100

150

200

250

300

350

PERCENT ERROR SUMS

0

5

10

15

20

25

30

ELAPSED TIME

noise

1

2

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

50

100

150

ELAPSED TIME SUMS

0

20

40

60

80

100

PERCENT ERRORS

noise

1

2

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

100

200

300

400

500

600

PERCENT ERROR SUMS

0

500

1000

1500

2000

2500

3000

SVDS

−50

0

50

INPUT

−50

0

50

INPUT

0

50

100

150

percent errors vs k

k values

%
 e

rr
o

r

1
2

0

50

100

150

percent errors vs k

k values

%
 e

rr
o

r

1
2

Figure 3.4: Experiments 2: runtimes and percent errors for FISTA (1) and FIVTA
(2) measured at the noise matching τ , plotted versus increasing matrix sizes, noise
levels in b and number of nonzeros in signal x. When number of nonzeros is fixed:
we use 15 percent nonzeros, when noise is fixed we use 10 percent noise in b. All
the quantities are medians over 10 different runs. Last row shows also an experiment
where we introduce errors into the matrix A by using a low rank SVD approximation
UkΣkV

T
k with different values of k. We see similar levels of performance between

FISTA and FIVTA at significantly less runtime for FIVTA.

86

Now we test the dependence of FIVTA on τ and K. What if τ is not known in

advance (for instance, what if the noise level is unknown and we cannot predict what

τ to use). What if the number of nonzeros in the signal cannot be estimated?

0

20

40

60

80

100

PERCENT ERRORS

tau

1

2

0

5

10

15

20

25

ELAPSED TIME

tau

1

2

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

50

100

150

200

250

300

PERCENT ERROR SUMS

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

20

40

60

80

100

120

ELAPSED TIME SUMS

Figure 3.5: Experiments 3 - Dependence on τ : Percent errors and elapsed times as
a function of τ . For each τ , we run FISTA and FIVTA from zero initial guess until
convergence or maximum number of iterations (3000) is reached. We plot the medians
for 10 different runs, a well conditioned random matrix with 15 percent nonzeros is
used in each case. We observe that for τ closer to max(|A∗b|), FIVTA performs better.
That is, FIVTA offers an advantage if the right τ to use cannot be precomputed in
advance.

0

20

40

60

80

100

PERCENT ERRORS

K
0

20

40

60

80

100

PERCENT ERRORS

K
0

20

40

60

80

100

PERCENT ERRORS

K

Figure 3.6: Experiments 4 - Dependence on K: We plot the percent error of the
reconstruction at the noise matching τ for different starting values of K from 1

3
to

3 times the actual number of nonzeros in the signal. The three plots correspond to
three different signals with increasing percent of nonzeros: 3 percent, 10 percent, and
30 percent. Notice that at 30 percent nonzeros (of a total of 1500 entries), we cannot
consider the signal to be truly sparse. Indeed, if K is taken to be larger than the
spark, the algorithm will blow up as the third graph illustrates.

Finally we present a simple example of image denoising. Assume we are given

a noisy image x̃. We would like to denoise the image, or recover something closer

to the true noiseless image x. We assume the image can be sparsely represented in

the wavelet domain. Below we take two hand made images with just five percent

87

nonzeros in the wavelet representation. We then add 40 percent random Gaussian

noise to each image to produce x̃. Given y in the wavelet domain, we look to optimize

||Fy−x̃||22+2τ ||y||1 with FISTA and with FIVTA, which optimizes ||Fy−x̃||22+hρ̄,τ (y)

provided that ρ̄ = limn→∞ ρn exists. The map F is the inverse map of a redundant

wavelet basis using the ‘db3’ family. Having obtained y we plot Fy as a denoised

image. Since in this test we know the noiseless image x we pick a τ that results in the

minimum norm error between Fy and x for each algorithm. We show that after 1000

iterations at this best τ , FIVTA denoises the image better than FISTA, a possible

application of the algorithm.

Figure 3.7: Experiments 5. On each row: original image (96x96), noisy image, de-
noised image with FISTA, denoised image with FIVTA, each using 1000 iterations.
We observe that the image produced by FIVTA has less noise and is closer to the
original.

3.6 Chapter Remarks and Conclusions

We have presented an iterative algorithm, IVTA, which uses a different type of thresh-

olding and its corresponding fast version called FIVTA. The algorithm was designed

88

with the idea of lowering the residual term ||Ax− b||2 faster than with soft threshold-

ing. For a similar value of τ as compared to soft thresholding, the algorithm produces

a solution of comparable sparsity but with a lower residual value. For this reason, in

the case that the noise variance is known, the convergence of the algorithm is sub-

stantially faster than that of FISTA since the desired solution would be computed at

a higher value of τ and convergence of soft thresholding methods, including FISTA,

is known to be slow for small values of τ . We have exhibited some numerical exper-

iments to show this is the case. In particular FIVTA seems better to use when the

right thresholding parameter is not known. We show more numerical experiments in

Chapter 5.

89

Chapter 4

TWO NEW ITERATIVELY

REWEIGHTED LEAST

SQUARES ALGORITHMS FOR

THE MINIMIZATION OF A

GENERALIZED SPARSITY

PROMOTING FUNCTIONAL

4.1 Overview

In Chapter 2, we briefly discussed how we can come up with sparse regularization

algorithms by replacing the non-smooth portion of the sparsity promoting functional

by a smooth approximation. The technique was to convolve the non-smooth function

with a narrow Gaussian, which works, but does not produce a particularly accurate

algorithm. In this chapter, we discuss two algorithms based on a different smooth-

90

ing approach, which approximates the one-norm in terms of a reweighted two norm

||x||2,w =
N∑
k=1

wkx
2
k, which is smooth. The approximation can be made by noting that:

|xk| =
x2
k

|xk|
=

x2
k√
x2
k

≈ x2
k√

x2
k + ε2

where in the rightmost term, a small ε 6= 0 is used, to insure the denominator is

finite, regardless of the value of xk. Thus, given an estimate of the signal x at the

n-th iteration, xn, an approximation to the `1 takes the form:

||x||1 ≈
N∑
k=1

x2
k√

(xnk)2 + ε2n

where the right hand side is a reweighted two-norm with weights wnk = 1√
(xnk)2+ε2n

where εn → 0 as n → ∞. The approximation is thus expected to get more accurate

as the iterations progress. The key to the methods described in this chapter is to

choose the parameters in a way that leads to good numerical performance and allows

for convergence analysis without placing strict conditions on the properties of the

matrix, other than its spectral norm. In this chapter, we discuss two versions of an

Iteratively Reweighted Least Squares (IRLS) method, designed for the minimization

of the more general functional:

F (x) = ||Ax− b||22 + 2
N∑
k=1

λk|xk|qk ,

where A ∈ Rm×N , b ∈ Rm, and for k = 1, . . . , N , λk ≥ 0 and 1 ≤ qk < 2. We argue

that this more general functional, which is capable of penalizing different parts of the

solution vector in different ways, is well suited for many applications, especially those

involving structured sparsity via a transform. In our numerical experiments, the new

91

methods offer similar performance to the popular FISTA algorithm for qk = 1, but are

more general and better applicable to problems requiring mixed norm regularization.

The first algorithm, IRLS, can be implemented as a simple iterative scheme of the

form:

xn+1
k =

1

1 + qkλkwnk
(xnk + (AT b)k − (ATAxn)k),

with certain weights wnk . The second algorithm, called IRLS SYS, where the “SYS”

refers to the fact that it involves a linear system each step, can be implemented as:

(ATA+ Φn)xn+1 = AT b, (4.1.1)

where Φn is a diagonal matrix containing the product of iteratively adapting weights

wnk and the constant qkλk on its diagonal. Because the only difference in the linear

system between steps n+ 1 and n consists in slightly changing the diagonal terms in

Φn to obtain Φn+1, at different iterations we are to solve linear systems that differ only

slightly from one another. The linear system (4.1.1) can be solved, for example, using

a conjugate gradient scheme. As the initial guess we can reuse the previous solution, to

speed up convergence. In later stages of the algorithm, where the solution changes at

a slower rate than at the beginning, typically fewer inner conjugate gradient iterations

are needed. Hence, the scheme is found to be efficient, even though a few iterations

of a solver, such as a conjugate gradient method, are typically needed at every step

of the algorithm.

The algorithms presented here are shown to converge for general matrices A with

spectral norm ||A||2 less than one. In fact, when in the generalized functional all

qk > 1, we show that the iterates themselves converge to the unique minimizer.

92

4.2 Generalized Sparsity Promoting Functional

We first discuss the motivation for using the functional:

F (x) := ||Ax− b||22 + 2
N∑
k=1

λk|xk|qk , (4.2.1)

where A ∈ Rm×N , b ∈ Rm, and for k = 1, . . . , N , λk ≥ 0 and 1 ≤ qk < 2. Then we

derive the optimality conditions and state a uniqueness theorem. As is easily seen the

popular `1-functional: ||Ax − b||22 + 2λ||x||1 is a special case of the above. However,

we can get sparse solutions for any qk below 2, except that for larger qk the solutions

tend to be less sparse. In general, the more general functional is advantageous for a

few different reasons. First of all, the sparseness of a solution tends to be the result

of a transform through which it is expressed. That is to say, a sparse solution may

not necessarily exist in the default, Euclidean basis, but may exist under a suitable

transformation. Such is the case for example for images and wavelets. Many images

can be sparsely represented under a wavelet transform. A wavelet transform, however,

gives structure to the data. The transformed vector consists of several different parts:

in addition to wavelet functions at different scales, it also contains a superposition of

coarse scaling functions. There is no need to treat all of these parts in the same way.

Often, for example, we may want to keep most of the scaling coefficients instead of

setting them to zero. On the other hand, there may be many fine wavelet coefficients,

many of which are very small and can be safely set to zero, since we typically expect

the wavelet part to be sparse. This kind of operation can be accomplished with the

above functional., e.g. by setting qk close to 2 for the scaling coefficients, but qk = 1

for wavelets.

There are other applications of the above functional, where penalizing components

differently may be useful. First is the case when a complicated coordinate system

93

is used. The vector x may inherently represent a multi-dimensional structure, such

as the cubed sphere geometry, discussed in a later chapter. Within this structure

different parts (such as different chunks in the cubed sphere) may need to be treated

differently. These different parts correspond to different coefficients sets of x and this

different treatment is most easily accomplished with the above functional. Finally, in

applications we may choose to look for a solution that is represented sparsely by using

a few different bases. That is, instead of finding some solution w such that x = W−1w

somehow satisfies the data, we may instead look for a solution that is represented as:

x = α1W
−1
1 w1 + · · · + αNW

−1
N wN . In this application, we typically use a combined

matrix
(
AW−1

1 , . . . , AW−1
N

)
and a combined vector of the form (w1, . . . , wN). It is

clear that different parts of this vector would demand separate treatment depending

on how much we would like to weigh contributions of different bases to have.

Below we present some results on the above functional. We start by deriving the

optimality conditions for the functional.

Lemma 4.2.1. The conditions for the minimizer of the functional F (x) = ||Ax −

b||22 + 2
N∑
k=1

λk|xk|qk are:

(AT (b− Ax))k = λk sgn(xk)qk|xk|qk−1 , xk 6= 0

(AT (b− Ax))k = 0 , xk = 0 (qk > 1)∣∣(AT (b− Ax))k
∣∣ ≤ λk , xk = 0 (qk = 1)

(4.2.2)

Proof. For the case 1 ≤ qk ≤ 2, F (x) is convex, so any local minimizer is necessarily

global and to characterize the minimizer it is necessary only to work out the conditions

corresponding to F (x) ≤ F (x + tz) for all t ∈ R and all z ∈ RN . F (x) ≤ F (x + tz)

94

implies that

t2||Az||2 + 2t〈z, AT (Ax− b)〉+ 2
N∑
k=1

λk (|xk + tzk|qk − |xk|qk) ≥ 0. (4.2.3)

We shall derive N conditions, one for each index k ∈ {1, . . . , N}. To get the k-th

condition, we consider z of the special form z = zkek (i.e. all entries of z are 0, except

for the k-th entry). At this point, we have to consider two different cases: xk 6= 0 and

xk = 0. When xk 6= 0, we expand f(t) = |xk + tzk|qk in Taylor series around 0 to get

f(t) = f(0) + tf ′(0) +O(t2). When t is small, sgn(xk + tzk) = sgn(xk) if xk 6= 0. For

xk > 0, we have |xk + tzk| = xk + tzk, so f(t) = (xk + tzk)
qk and:

f ′(t) = qkzk(xk + tzk)
qk−1 = sgn(xk)qkzk|xk + tzk|qk−1.

For xk < 0, |xk + tzk| = −(xk + tzk), so f(t) = |xk + tzk|qk = (−xk − tzk)qk and:

f ′(t) = qk(−zk)(−xk − tzk)qk−1 = sgn(xk)qkzk|xk + tzk|qk−1.

Thus, for both signs of xk: f
′(t) = sgn(xk)qkzk|xk + tzk|qk−1, implying that f ′(0) =

sgn(xk)qkzk|xk|qk−1. So for some constant C > 0:

f(t) = |xk + tzk|qk = |xk|qk + t sgn(xk)qkzk|xk|qk−1 +O(t2)

≤ |xk|q + t sgn(xk)qkzk|xk|qk−1 + Ct2,

and, recalling that z = zkek, (4.2.3) implies that

t2||A(zkek)||2 + 2t〈zkek, AT (Ax− b)〉+ 2λk
(
t sgn(xk)qkzk|xk|qk−1 + Ct2

)
≥ 0

=⇒ t2
(
||A(zkek)||2 + Cλk

)
+ 2t

(
zk(A

T (Ax− b))k + λk sgn(xk)qkzk|xk|qk−1
)
≥ 0.

95

The first term can be made arbitrary small with respect to the second term, so as

this holds for all t this implies:

zk(A
T (Ax− b))k + λk sgn(xk)qkzk|xk|qk−1 = 0,

which leads to:

(AT (b− Ax))k = λk sgn(xk)qk|xk|qk−1 , xk 6= 0.

Note that when qk = 1 we recover the familiar condition for `1 minimization:

(AT (b− Ax))k = λk sgn(xk) , xk 6= 0.

When xk = 0, recalling that z = zkek, (4.2.3) gives:

t2||A(zkek)||2 + 2t〈zkek, AT (Ax− b)〉+ 2λk|t|qk |zk|qk ≥ 0. (4.2.4)

Making the substitutions t2 = |t|2, t = |t| sgn(t), we obtain

|t|2||A(zkek)||2 + |t|
(
2 sgn(t)zk(A

T (Ax− b))k + 2λk|t|qk−1|zk|qk
)
≥ 0. (4.2.5)

In this case, we have to consider the case qk = 1 and qk > 1 separately. When qk > 1

we have that:

|t|2||Az||2 + 2λk|t|qk |zk|qk + 2|t| sgn(t)zk(A
T (Ax− b))k ≥ 0.

Since qk > 1, the first two terms on the left have greater powers of |t| than the last

term and can be made arbitrary small by picking t small enough. This means we

96

must have:

2 sgn(t)zk(A
T (Ax− b))k ≥ 0

for all t, which can be true only if (AT (Ax − b))k = 0. Thus, we conclude that the

condition is :

(AT (b− Ax))k = 0 , xk = 0 (qk > 1).

For qk = 1 we have from (3) that:

|t|2||Az||2 + |t|
(
2 sgn(t)zk(A

T (Ax− b))k + 2λk|zk|
)
≥ 0

=⇒ sgn(t)zk(A
T (Ax− b))k + λk|zk| ≥ 0.

Now consider the two cases: where t and zk have the same sign: sgn(t) = sgn(zk) or

opposite signs: sgn(t) = − sgn(zk). Then we have, respectively:

(AT (Ax− b))k + λk ≥ 0 and − (AT (Ax− b))k + λk ≥ 0,

so we obtain the condition :

∣∣(AT (b− Ax))k
∣∣ ≤ λk , xk = 0 (qk = 1).

Thus, we can summarize the component-wise conditions for the minimizer of F (x)

as in (4.2.2).

The functional F (x) defined in (4.2.1) may not have a unique minimizer. However,

we can prove the lemma given below, which effectively says that any two minimizers

would have the same degree of sparseness and fit:

Lemma 4.2.2. Let u and v both be minimizers of the functional F (x) defined in

(4.2.1). Then we have: ||Au − b||2 = ||Av − b||2 and
N∑
k=1

λk|uk|qk =
N∑
k=1

λk|vk|qk .

97

Additionally, if we have that all qk > 1 for all k, then we have uniqueness (i.e.

u = v).

Proof. Let p(x) = ||Ax− b||22 and q(x) = 2
N∑
k=1

λk|xk|qk , so F (x) = p(x) + q(x). Both

p(x) and q(x) are convex functions. This means that:

p(tu+ (1− t)v) ≤ tp(u) + (1− t)p(v) and q(tu+ (1− t)v) ≤ tq(u) + (1− t)q(v)

for t ∈ [0, 1]. We have:

F (u) = ||Au− b||22 + 2
N∑
k=1

λk|uk|qk = ||Av − b||22 + 2
N∑
k=1

λk|vk|qk = F (v),

and

F

(
u+ v

2

)
= p

(
u+ v

2

)
+ q

(
u+ v

2

)
≤ 1

2
(p(u) + p(v)) +

1

2
(q(u) + q(v))

=
1

2
(F (u) + F (v)) ≤ 1

2

(
F

(
u+ v

2

)
+ F

(
u+ v

2

))
= F

(
u+ v

2

)
,

where the first inequality follows by convexity and the second inequality follows be-

cause u and v are both minimizers of F . It follows that we can replace all the

inequalities above by equalities. Hence, in particular, we have that:

p(u) + p(v) = 2p

(
u+ v

2

)
=⇒ ||Au− b||22 + ||Av − b||22 = 2

∥∥∥∥A(u+ v

2

)
− b
∥∥∥∥2

2

.

98

Expanding both sides we have:

||Au||2 + ||Av||2 − 2〈Au, b〉+ ||b||2 − 2〈Av, b〉+ ||b||2

= 2

(
1

4
||A(u+ v)||2 − 2

〈
A

(
u+ v

2

)
, b

〉
+ ||b||2

)
=⇒ ||Au||2 + ||Av||2 =

1

2
||A(u+ v)||2

=⇒ 1

2
||Au||2 +

1

2
||Av||2 − 〈Au,Av〉 = 0

=⇒ 1

2
||A(u− v)||22 = 0.

Thus, ||A(u−v)|| = 0 =⇒ Au = Av =⇒ ||Au− b||2 = ||Av− b||2 =⇒ p(u) = p(v).

Since we have that F (u) = F (v), we must also have q(u) = q(v).

In the special case where qk > 1 for all k, the functional F (x) is strictly convex,

and has thus a unique global minimizer.

99

4.3 Connection to Previous Work

In this section, we state the connection between the work in this paper and previous

work in [12]. The algorithm in [12] dealt with the constrained case (without noise),

i.e. it sought to minimize, using an IRLS approach, ||x||1 among all x satisfying

Ax = b,and can be motivated by the two lemmas below. The algorithm considered

the minimization problem in terms of the reweighted `2 norm ||x||2,w =
N∑
k=1

wkx
2
k.

[min ||x||1 s.t. Ax = b]→
[
min
x
||Dx||22 s.t. Ax = b

]

where ||Dx||22 =
N∑
k=1

D2
k,kx

2
k and we have that DTD = D2 = W−1 where W is the

weight matrix with the weights on the diagonals. We now derive (informally) the

form of the solution. Rewriting the problem above in terms of Lagrange multipliers

we have:

x̂ = arg min
x

(
||Dx||22 + yT (Ax− b)

)
=⇒ 2DTDx̂+ ATy = 0

=⇒ x̂ = −1

2
(DTD)−1ATy

=⇒ Ax̂ = −1

2
A(DTD)−1ATy = b

=⇒ y = −2
(
A(DTD)−1AT

)−1
b.

Plugging in the expression for y in the expression for x we obtain:

x̂ = (DTD)−1AT
(
A(DTD)−1AT

)−1
b = WAT

(
AWAT

)−1
b,

100

which corresponds to ([12], equation 1.9). We note that the matrix DTD above is

invertible, since the diagonal weight matrix W has no zero weights. The above linear

system can then be solved by a method such as the conjugate gradient algorithm.

The algorithm in [12] can be motivated by the two lemmas below, which show some

degree of equivalence between minimizing the one-norm and solving a weighted `2

problem, at least in the case when none of the components vanish. We begin with a

lemma that characterizes an `1 minimizer:

Lemma 4.3.1. Consider all x such that Ax = b; we denote this set θ(b). An element

x of θ(b) has minimal `1-norm among all elements z ∈ Φ(b) if and only if for all d in

null space of A, we have: ∣∣∣∣∣∑
xi 6=0

sgn(xi)di

∣∣∣∣∣ ≤∑
xi=0

|di|

Proof. Consider first the case when x ∈ θ(b) has minimal `1-norm within θ(b). This

means that for any d in the null space of A and t ∈ R, we have: ||x||1 ≤ ||x + td||1.

(Note that x+ td is in θ(b) since A(x+ td) = b+ 0 = b because Ad = 0.) Thus:

N∑
i=1

|xi + tdi| ≥
N∑
i=1

|xi| =
∑
xi 6=0

sgn(xi)xi.

Note now that, for t sufficiently small, we have
N∑
i=1

|xi + tdi| =
∑
xi 6=0

(xi + tdi) sgn(xi +

tdi) +
∑
xi=0

|tdi|. For small t, we also have sgn(xi + tdi) = sgn(xi) whenever xi 6= 0.

Thus, we obtain:

∑
xi 6=0

sgn(xi)xi +
∑
xi 6=0

sgn(xi)tdi +
∑
xi=0

|tdi| ≥
∑
xi 6=0

sgn(xi)xi.

Thus: ∑
xi 6=0

sgn(xi)tdi +
∑
xi=0

|tdi| ≥ 0.

101

For t 6= 0, dividing by |t| we get:

∑
xi 6=0

sgn(xi) sgn(t)di +
∑
xi=0

|di| ≥ 0.

Taking t > 0 and then t < 0 we have:

−
∑
xi 6=0

sgn(xi)di +
∑
xi=0

|di| ≥ 0 and
∑
xi 6=0

sgn(xi)di +
∑
xi=0

|di| ≥ 0

=⇒
∑
xi=0

|di| ≥

∣∣∣∣∣∑
xi 6=0

sgn(xi)di

∣∣∣∣∣ .
Now we show that

∑
xi=0 |di| ≥ |

∑
xi 6=0 sgn(xi)di| implies that ||x + td||1 ≥ ||x||1 for

arbitrary d ∈ ker(A) and t:

||x||1 =
N∑
i=1

|xi| =
∑
xi 6=0

sgn(xi)xi =
∑
xi 6=0

sgn(xi)(xi + tdi)−
∑
xi 6=0

sgn(xi)tdi.

Next:

∑
xi 6=0

sgn(xi)(xi + tdi)− t
∑
xi 6=0

sgn(xi)di ≤
∑
xi 6=0

sgn(xi)(xi + tdi) + |t|

∣∣∣∣∣∑
xi 6=0

sgn(xi)di

∣∣∣∣∣
≤

∑
xi 6=0

sgn(xi)(xi + tdi) + |t|
∑
xi 6=0

|di|,

where the last inequality follows by the assumption. Since sgn(xi)(xi+tdi) ≤ |xi+tdi|,

regardless of the relative sizes of xi, t, di, we have thus:

||x||1 ≤
∑
xi 6=0

|xi + tdi|+
∑
xi=0

|tdi| = ||x+ td||1.

102

Next, we show the connection between `1-minimization and weighted-`2 minimiza-

tion through the following lemma:

Lemma 4.3.2. Take A ∈ Rm×N , b ∈ Rm, and suppose x ∈ RN satisfies Ax = b and

xi 6= 0 for all i. Then the following are equivalent:

(1) x solves

min ||z||1 s.t. Az = b. (4.3.1)

(2) For any d ∈ ker(A),
N∑
i=1

di sgn(xi) = 0.

(3) x solves min ||z||2,w among all z such that Az = b where wi = 1
|xi| .

Proof. First, we prove (1) =⇒ (2). Pick d ∈ ker(A). Then for any t ∈ R, td ∈

ker(A). By Lemma 4.3.1, (1) =⇒

∣∣∣∣∣
N∑
i=1

tdi sgn(xi)

∣∣∣∣∣ ≤ 0, since xi 6= 0 for all i. This

implies
N∑
i=1

di sgn(xi) = 0 since the above holds for both positive and negative t.

Next, we prove (2) =⇒ (1). Suppose
N∑
i=1

di sgn(xi) = 0 for d ∈ ker(A). We want to

show that ||x+ td||1 ≥ ||x||1 for all t:

||x+ td||1 =
N∑
i=1

|xi + tdi| ≥
N∑
i=1

(xi + tdi) sgn(xi)

=
N∑
i=1

xi sgn(xi) + t
N∑
i=1

di sgn(xi) = ||x||1 + 0 = ||x||1

by the assumption. Hence, it follows that ||x+ td||1 ≥ ||x||1.

103

Next, we prove (2) =⇒ (3). Suppose
∑
xi 6=0

di sgn(xi) = 0 for d ∈ ker(A). We want to

show that ||x+ td||22,w ≥ ||x||22,w. We have:

||x+ td||22,w = ||x||22,w + t2||d||22,w + 2t
N∑
i=1

xi
|xi|

di

= ||x||22,w + t2||d||22,w + 2
N∑
i=1

sgn(xi)di

= ||x||22,w + t2||d||22,w ≥ ||x||22,w.

Finally, we prove (3) =⇒ (2). Suppose for d ∈ ker(A) and for t ∈ R, we have:

||x+ td||22,w ≥ ||x||22,w. Expanding we have:

||x||22,w ≤ ||x+ td||22,w = ||x||22,w + t2||d||22,w + 2t
N∑
i=1

sgn(xi)di

=⇒ 2t
N∑
i=1

sgn(xi)di + t2||d||22,w ≥ 0 =⇒ 2t
N∑
i=1

sgn(xi)di ≥ 0 for all t

=⇒
N∑
i=1

sgn(xi)di = 0.

Note that the equivalence between item (1) and item (3) in Lemma 4.3.2 cannot

be used directly to design an algorithm to find the solution to (4.3.1). For, since the

solution to (4.3.1) is unknown, we cannot directly make use of (3), which involves

the solution of (1) to determine the weights. However, we can iterate on the weights,

updating them as an approximate solution to (3) is improved, starting from some

initial guess. In this way an iterative algorithm can be posed as is done in [12]. In the

same spirit as above we can state the following lemma, which extends the above result

to our generalized functional, which is unconstrained but contains a penalization term:

104

Lemma 4.3.3. Take A ∈ Rm×N , b ∈ Rm, λk ≥ 0 for k = 1, . . . , N , 1 ≤ qk < 2 for

k = 1, . . . , N , and consider x ∈ RN such that xk 6= 0 for all k. Then the following

are equivalent:

(1) x solves min
z
||Az − b||22 + 2

N∑
k=1

λk|zk|qk .

(2) 〈Ax− b, Ad〉+
N∑
k=1

λkqkdk sgn(xk)|xk|qk−1 = 0 for every d ∈ RN .

(3) x solves minz ||Az − b||22 +
N∑
k=1

λkwkz
2
k with weights wk = qk|xk|qk−2.

Proof. We first show that (1) =⇒ (2) and vice-versa. Since for 1 < qk ≤ 2, the

functional: F (z) = ||Az− b||22 + 2
N∑
k=1

λk|zk|qk is convex, each minimizer x at which F

is differentiable, satisfies (∇F (x))k = 0. Differentiating F (z) with respect to z, for z

with zk 6= 0 for all k:

(∇F (z))k = (AT (Az − b))k + 2λkqk sgn(zk)|zk|qk−1.

It follows that F is differentiable at x, and (∇F (x))k = 0 implies

(AT (Ax− b))k + 2λkqk sgn(xk)|xk|qk−1 = 0. (4.3.2)

Since x minimizes F , (4.3.2) holds for all k, and in particular for any d ∈ RN we have:

〈Ax− b, Ad〉+ 2
N∑
k=1

λkqkdk sgn(xk)|xk|qk−1 = 0. (4.3.3)

Conversely, if (4.3.3) holds for all d ∈ RN , then for k = 1, . . . , N , by taking d = ek

(4.3.2) holds. Also, since xk 6= 0 for all k, F is differentiable at x and ∇F (x) = 0.

Then x minimizes the convex function F .

105

To show the equivalence between (1) and (3) consider the functions:

F (z) = ||Az − b||22 + 2
N∑
k=1

λk|zk|qk and G(z) = ||Az − b||22 + 2
N∑
k=1

λkwkz
2
k,

with wk = qk|xk|qk−2. Both F and G are convex. Since we assume that xk 6= 0 for all

k, both are differentiable at x. In fact, we have that, for z such that zk 6= 0 for all k,

1

2

∂

∂zk
F (z) = AT (Az − b) + λkqk sgn(zk)|zk|qk−1 and

1

2

∂

∂zk
∇G(z) = AT (Az − b) + λkwkzk.

Plugging in z = x and wk = qk|xk|qk−2 we see that both expressions above eval-

uate to AT (Ax − b) + λkqk sgn(xk)|xk|qk−1 since wkxk = qk|xk|qk−2|xk| sgn(xk) =

qk sgn(xk)|xk|qk−1. If (1) holds then we must have that ∇F (x) = 0. But this means

that ∇G(x) = 0 as well, since ∇F (x) = ∇G(x). Therefore, x solves (1) if and only if

it solves (3) and the lemma is established.

Lemma 4.3.3 shows that, at least in principle, a reweighted two-norm algorithm

for the minimization of our functional is possible. The methods and verification of

convergence of the algorithms are the topic of the following two subsections.

106

4.4 IRLS Algorithm

We now present analysis of the first IRLS algorithm. Given an initial guess x0, an

initial parameter ε0 = 1, the matrix A with ||A||2 < 1, the (possibly noisy) right hand

side b, 1 ≤ qk < 2 and λk ≥ 0 for k = 1, . . . , N , and fixed parameters 0 < γ < 1 and

0 < α < 1, the iterative scheme is given by:

wnk =
1

((xnk)2 + (εn)2)
2−qk

2

xn+1
k =

1

1 + qkλkwnk

(
xnk + (AT b)k − (ATAxn)k

)
εn+1 = min(εn, ||xn+1 − xn||γ + αn+1) ; 0 < γ < 1 , 0 < α < 1.

(IRLS)

The main convergence result is that, if the functional

F (x) = ||Ax− b||22 + 2
N∑
k=1

λk|xk|qk (4.4.1)

has a unique minimizer (this is the case if qk > 1 for all k, or if ker(A) = {0}, but it can

also be true, generically, even when these conditions are not met), then the iterative

algorithm converges to this minimizer. More generally, all accumulation points of

the sequence (xn)n are minimizers for the functional. Note that the traditional `1

functional is a special case of the functional F (x).

We show that the iterates xn are bounded and that there exist converging subse-

quences, the limit of which satisfies the optimality conditions for the minimization of

F (x).

Lemma 4.4.1. Define the surrogate functional:

G(x, a, w, ε) = ||Ax− b||22 − ||A(x− a)||22 + ||x− a||22

+
N∑
k=1

λk

(
qkwk((xk)

2 + ε2) + (2− qk)(wk)
qk
qk−2

)
.

107

Then the minimization procedure:

wn+1 = arg min
w
G(xn+1, a, w, εn+1)

leads to

wn+1
k =

1

((xn+1
k)2 + (εn+1)2)

2−qk
2

. (4.4.2)

In addition, the minimization procedure:

xn+1 = arg min
x
G(x, xn, wn, εn)

produces the iterative scheme:

(xn+1)k =
1

1 + qkλk(wn)k

(
(xn)k − (ATAxn)k + (AT b)k

)
. (4.4.3)

Proof. First, note the derivation of the weights via: wn+1 = arg minwG(xn+1, a, w, εn+1),

where:

G(xn+1, a, w, εn+1) = ||Axn+1 − b||22 − ||A(xn+1 − a)||22 + ||xn+1 − a||22

+
N∑
k=1

λk

(
qkwk((x

n+1
k)2 + (εn+1)2) + (2− qk)(wk)

qk
qk−2

)
.

Only the last term of G has a dependence on w. We have:

∂

∂wk

(
qkwk((x

n+1
k)2 + (εn+1)2) + (2− qk)(wk)

qk
qk−2

)
= 0

=⇒ qk
(
(xn+1

k)2 + (εn+1)2
)

+ (2− qk)
qk

qk − 2
(wk)

qk
qk−2

−1
= 0

=⇒ wn+1
k =

1(
(xn+1

k)2 + (εn+1)2
) 2−qk

2

.

108

Next, let us check that the statement:

xn+1
k = (arg min

x
G(x, xn, wn, εn))k

recovers the iterative scheme (4.4.3). Consider:

G(x, xn, wn, εn) = ||Ax− b||22 − ||A(x− xn)||22 + ||x− xn||22

+
N∑
k=1

λk

(
qkw

n
k ((xk)

2 + (εn)2) + (2− qk)(wnk)
qk
qk−2

)
,

(4.4.4)

and differentiate with respect to x, then take the k-th component and set to zero.

Removing terms which do not depend on x, we can then write the above as:

∂

∂xk

(
||Ax− b||22 − ||A(x− xn)||22 + ||x− xn||22 +

N∑
l=1

qlλlw
n
l x

2
l

)
= 0

and the result is:

−2(AT b)k + 2(ATAxn)k + 2xk − 2xnk + 2qkλkw
n
kxk = 0.

Then we solve for xk and define xn+1
k to be the result:

xn+1 = arg min
x
G(x, xn)

=⇒ xk(1 + qkλkwk) = xnk + (AT b)k − (ATAxn)k

=⇒ xn+1
k =

1

1 + qkλkwk
(xn + AT b− ATAxn)k.

109

Remark 4.4.2. Assume that as n → ∞, xn → x and εn → 0. Notice that with the

weights in (4.4.2), we have that:

wnk (xnk)2 =
(xnk)2

((xnk)2 + (εn)2)
2−qk

2

→ (xk)
qk as k →∞.

From (4.4.4), we have

G(xn, xn, wn, εn) = ||Axn − b||22 + 2
N∑
k=1

λk((x
n
k)2 + (εn)2)

qk
2 ,

since:

qkw
n
k

(
(xk)

2 + (εn)2
)

+ (2− qk)(wnk)
qk
qk−2

= qk
(
(xnk)2 + (εn)2

)(qk−2

2
+ 2

2)
+ (2− qk)

(
(xnk)2 + (εn)2

)(qk−2

2

qk
qk−2

)

= 2
(
(xnk)2 + (εn)2

) qk
2 .

As n→∞, and assuming xn → x and εn → 0, we have that:

lim
n→∞

G(xn, xn, wn, εn) = ||Ax− b||22 + 2
N∑
k=1

λk(xk)
qk ,

so we recover the functional we would like to minimize.

The constructions provided in Lemma 4.4.1 are used below to show the relevant

properties of the IRLS algorithm.

Lemma 4.4.3. Assume that the spectral norm ||A||2 ≤ 1. (This can be accomplished

by a simple rescaling.) Then the iterates generated by (IRLS) satisfy ||xn−xn−1|| → 0

and are bounded in norm.

110

Proof. From Lemma 4.4.1:

xn+1 = arg min
x
G(x, xn, wn, εn)

wn+1 = arg min
w
G(xn+1, a, w, εn+1).

Using these constructions we write down a sequence of inequalities:

G(xn+1, xn+1, wn+1, εn+1) ≤ G(xn+1, xn+1, wn, εn+1) [A]

≤ G(xn+1, xn, wn, εn+1) [B]

≤ G(xn+1, xn, wn, εn) [C]

≤ G(xn, xn, wn, εn). [D]

We now offer explanations for [A−D]. First, [A] follows from wn+1 = arg min
w
G(xn+1, a, w, εn+1).

Next, [B] follows from ||A(x − xn)||2 ≤ ||A||2||x − xn||2 ≤ ||x − xn||2 for ||A||2 ≤ 1

so that ||x − xn||22 − ||A(x − xn)||22 ≥ 0. Next, [C] follows from εn+1 ≤ εn. Finally,

[D] follows from xn+1 = arg min
x
G(x, xn, wn, εn). We now set up a telescoping sum of

non-negative terms:

P∑
n=1

(
G(xn+1, xn, wn, εn+1)−G(xn+1, xn+1, wn, εn+1)

)
≤

P∑
n=1

(
G(xn, xn, wn, εn)−G(xn+1, xn+1, wn+1, εn+1)

)
= G(x1, x1, w1, ε1)−G(xN+1, xN+1, wN+1, εN+1) ≤ C

for some fixed constant C. All this implies:

P∑
n=1

(
||xn − xn+1||22 − ||A(xn − xn+1)||22

)
=

P∑
n=1

(
G(xn+1, xn, wn, εn+1)−G(xn+1, xn+1, wn, εn+1)

)
≤ C.

111

Since ||A(xn − xn+1)||22 ≤ ||A||22||xn − xn+1||22 and ||A||2 < 1:

||xn − xn+1||22 − ||A(xn − xn+1)||22 ≥ ||xn − xn+1||22 − ||A||22||xn − xn+1||22

= (1− ||A||22)||xn − xn+1||22.

Consequently, we have:

P∑
n=1

(1− ||A||22)||xn − xn+1||2 ≤
P∑
n=1

(
||xn − xn+1||22 − ||A(xn − xn+1)||22

)
≤ C

=⇒
∞∑
n=1

||xn − xn+1||2 <∞

=⇒ ||xn − xn+1|| → 0.

To prove that the (xn)’s are bounded, consider:

G(xn, xn, wn, εn) = ||Axn − b||22 + 2
N∑
k=1

λk
(
(xnk)2 + (εn)2

) qk
2 ,

We have that λk|xnk |qk ≤ G(xn, xn, wn, εn). This implies that:

|xnk | ≤
(

1

λk
G(xn, xn, wn, εn)

) 1
qk

≤
(

1

λk
G(x0, x0, w0, ε0)

) 1
qk

This implies that: ||xn||1 =
N∑
k=1

|xnk | ≤ N

(
1

λk
G(x0, x0, w0, ε0)

) 1
qk

=: C ′.

Lemma 4.4.4. There exists a special subsequence (nl) such that for every member of

the subsequence we have:

εnl = ||xnl − xnl−1||γ + αnl < εnl−1.

112

Additionally, there is a subsequence of this subsequence (nlr) such that (xnlr)r is con-

vergent.

Proof. By the definition of the εn’s:

εn = min(εn−1, ||xn − xn−1||γ + αn),

we know that εn → 0, since ||xn − xn−1|| → 0 and αn → 0. It follows that a

subsequence (nl) must exist such that εnl < εnl−1, for otherwise, there would be some

N0 such that for n ≥ N0, εn+1 = εn and the sequence of εn’s would not converge to

zero. The fact that nlr exists is a consequence of the boundedness of the iterates (xn),

which implies the existence of a weakly converging subsequence of the xnl (strongly

in a finite dimensional space).

Lemma 4.4.5. The limit x = limr→∞ x
nlr of the converging subsequence (xnlr)r∈N of

(IRLS) satisfies the optimality conditions for the functional:

||Ax− b||22 + 2
N∑
k=1

λk|xk|qk

for 1 ≤ qk < 2, namely:

(AT (b− Ax))k = λk sgn(xk)qk|xk|qk−1 , xk 6= 0

(AT (b− Ax))k = 0 , xk = 0 (qk > 1)∣∣(AT (b− Ax))k
∣∣ ≤ λk , xk = 0 (qk = 1).

(4.4.5)

Proof. Consider the subsequence (nlr) of the previous lemma. For this subsequence

we have from the above lemma that:

εnlr = ||xnlr − xnlr−1||γ + αnlr < εnlr−1.

113

This subsequence is also convergent:

lim
r→∞

x
nlr
k = xk for k = 1, . . . , N.

For each k, we consider three separate cases, depending on the limit xk and on the

value of qk:

(1) xk 6= 0 and 1 ≤ qk < 2,

(2) xk = 0 and qk = 1,

(3) xk = 0 and qk > 1.

Consider now the first case: limr→∞ x
nlr = xk 6= 0. Since xnlr → x and ||xn −

xn+1|| → 0, we have that: x
nlr+1
k → xk. Plugging the subsequence into the iteration,

we have:

x
nlr+1
k + qkλkw

nlr
k x

nlr+1
k = x

nlr
k + (AT (b− Axnlr))k.

Taking the limit as r →∞ we then recover:

xk + qkλk lim
r→∞

w
nlr
k x

nlr+1
k = xk + (AT (b− Ax))k,

and we thus recover:

lim
r→∞

w
nlr
k x

nlr+1
k =

1

qkλk
(AT (b− Ax))k. (4.4.6)

Since we want to compute [AT (b−Ax̄)]k, we are interested in the value of limr→∞w
nlr
k x

nlr+1
k .

In the case limr→∞ x
nlr = xk 6= 0, we obtain

lim
r→∞

w
nlr
k x

nlr+1
k = lim

l→∞
w
nlr
k x

nlr
k

x
nlr+1
k

x
nlr
k

= lim
l→∞

x
nlr
k w

nlr
k ,

114

since ||xn+1 − xn|| → 0 implies limr→∞
x
nlr

+1

k

x
nlr
k

= 1. This implies:

lim
r→∞

w
nlr
k x

nlr+1
k = lim

r→∞

x
nlr
k(

(x
nlr
k)2 + (εnlr)2

) 2−qk
2

=
xk

((xk)2 + 0)
2−qk

2

=
sgn(xk) |xk|
|xk|2−qk

= sgn(xk) |xk|qk−1 .

Thus, we obtain that: (AT (b− Ax))k = λkqk sgn(xk) |xk|qk−1, as required.

Consider now the situation in which limr→∞ x
nlr = xk = 0. We have

x
nlr
k + qkλkw

nlr−1
k x

nlr
k = x

nlr−1
k + (AT (b− Axnlr−1))k,

from which we recover:

lim
r→∞

w
nlr−1
k x

nlr
k =

1

qkλk
(AT (b− Ax))k.

We set:

Γk = lim
r→∞

(
w
nlr−1
k x

nlr
k

)2

.

For case 2, we would like to show that Γk ≤ 1; for case 3, that Γk = 0. We start by

supposing that Γk > 0, and derive consequences from this. In case 3, they will lead

to a contradiction to limr→∞ x
nlr = xk = 0; in case 2 we shall see that Γk ≤ 1 must

follow. So suppose Γk > 0. Then, for any σ with 0 < σ < 1, there exists some r0

large enough such that for all r > r0, we have that:

(w
nlr−1
k x

nlr
k)2 ≥ Γk(1− σ).

115

Now let snk = ((xnk)2 + (εn)2)
1
2 . Since wnk = ((xnk)2 + (εn)2)

qk−2

2 , we have that snk =

(wnk)
1

qk−2 . It follows that:

|xnlrk |
2 ≥ Γk(1− σ)(snlr−1)2(2−qk)

= Γk(1− σ)
(

(x
nlr−1
k)2 + (σnlr−1)2

)2−qk

> Γk(1− σ)
(

(x
nlr−1
k)2 + (σnlr)2

)2−qk

= Γk(1− σ)
(

(x
nlr−1
k)2 +

(
||xnlr − xnlr−1||γ + αnlr

)2
)2−qk

> Γk(1− σ)
(

(x
nlr−1
k)2 + |xnlr−1

k − xnlrk |
2γ
)2−qk

.

Let us use the substitutions:

u = x
nlr−1
k and v = x

nlr
k − x

nlr−1
k =⇒ u+ v = x

nlr
k .

Then we can rewrite |xnlrk |2 > Γk(1− σ)
(

(x
nlr−1
k)2 + |xnlr−1

k − xnlrk |2γ
)2−qk

as:

(u+ v)2 > Γk(1− σ)
(
u2 + |v|2γ

)2−qk ,

where:

(u+ v)2 = u2 + 2uv + v2 ≤ u2 +Ku2 +
1

K
v2 + v2 = (1 +K)u2 +

(
1 +

1

K

)
v2

for all K > 0. Thus, we have that:

Γk(1− σ)
(
u2 + |v|2γ

)2−qk < (1 +K)u2 +

(
1 +

1

K

)
v2. (4.4.7)

Consider now case 2 where qk = 1. We then have that:

(Γk(1− σ)− (1 +K))u2 <

(
1 +

1

K

)
v2 − Γk(1− σ)v2γ. (4.4.8)

116

Since γ > 0, the right hand side (1 + 1
K

)v2 − Γk(1 − σ)v2γ will be strictly less than

zero for sufficiently large r. That is because, since ||xn − xn+1|| → 0, we know that

|v| =
∣∣∣xnlrk − xnlr−1

k

∣∣∣ → 0 as r → ∞ and since 2γ < 2, v2γ goes to zero more slowly

than v2, which makes the whole term negative for r sufficiently large. But from

(4.4.8),

(
1 +

1

K

)
v2 − Γk(1− σ)v2γ < 0 =⇒ (Γk(1− σ)− (1 +K)) < 0;

we have thus that:

Γk(1− σ) < (1 +K) for all K > 0 =⇒ Γk(1− σ) ≤ 1.

Since σ is arbitrary small we conclude that Γk ≤ 1. By (4.4.6) and qk = 1, This

means:

Γk = lim
r→∞

(
w
nlr−1
k x

nlr
k

)2

≤ 1 =⇒ lim
r→∞

∣∣∣wnlr−1
k x

nlr
k

∣∣∣ ≤ 1 =⇒
∣∣∣∣ 1

λk
(AT (b− Ax))k

∣∣∣∣ ≤ 1.

This is the desired optimality condition for case 2.

Consider now case 3, where 1 < qk < 2. We have from (4.4.7) that:

Γk(1− σ)
(
u2 + |v|2γ

)2−qk < (1 +K)u2 +

(
1 +

1

K

)
v2 for all K > 0.

This means in particular that:

Γk(1− σ)u2(2−qk) < (1 +K)u2 +

(
1 +

1

K

)
v2 and

Γk(1− σ)v2γ(2−qk) < (1 +K)u2 +

(
1 +

1

K

)
v2.

117

Then the average of the terms is also smaller than this quantity:

1

2
Γk(1− σ)

(
u2(2−qk) + v2γ(2−qk)

)
< (1 +K)u2 +

(
1 +

1

K

)
v2.

Moving terms we have:

u2(2−qk)

(
1

2
Γk(1− σ)− (1 +K)u2(qk−1)

)
<

(
1 +

1

K

)
v2 − 1

2
Γk(1− σ)v2γ(2−qk).

Since 1 < qk and thus 2− qk < 1, we have that for v sufficiently small, the right hand

side is negative, by the same logic as in the previous case (since Γk > 0 by assumption

and for large r, v → 0 and the first term will go to zero faster than the second). Thus,

by the above inequality, for r sufficiently large, both the right and the left hand side

are negative. Since u2(2−qk) is non-negative, that is only possible when:

1

2
Γk(1− σ)− (1 +K)u2(qk−1) < 0

for r sufficiently large. However, limr→∞ u
2(qk−1) = limr→∞(x

nlr−1
k)2(qk−1) = 0, so that

this condition is impossible. This contradicts our original assumption that Γk > 0.

Hence, we conclude that Γk = 0 =⇒ (AT (b−Ax))k = 0, which is the right optimality

condition.

118

4.5 IRLS SYS Algorithm

We now present some analysis for the second IRLS method. Let us restate the method.

Given any initial guess x0, the matrix A with ||A||2 < 1, the iterative scheme is:

xn+1 = arg min
x
||Ax− b||22 +

N∑
k=1

λkqkw
n
k (xk)

2

with the weights and sequence of εn defined as:

wnk =
1

((xnk)2 + (εn)2)
2−qk

2

εn = min(εn−1, |G(xn−2, wn−2, εn−2)−G(xn−1, wn−1, εn−1)|
γ
2 + αn),

where:

G(x,w, ε) = ||Ax− b||22 +
N∑
k=1

λk

(
qkwk((xk)

2 + ε2) + (2− qk)(wk)
qk
qk−2

)

and 1 < qk ≤ 2 , 0 < α < 1 and 0 < γ < min 2
4−q2k

. We prove that this algorithm

converges to the minimizer of the functional ||Ax−b||22+2
N∑
k=1

λk|xk|qk with 1 ≤ qk < 2

if the functional has a unique minimizer, and that any accumulation point of the xn

is a minimizer if there are several. (Note that the traditional `1 functional is a special

case of the above functional.) We show that the iterates xn are bounded and that all

converging subsequences satisfy the optimality conditions of the above functional.

We now describe how the algorithm is implemented in practice. Introducing the

diagonal matrix Dn, note that we can rewrite the last term of the iterative method

as:
N∑
k=1

λkqkw
n
k (xk)

2 =
N∑
k=1

(Dn)2
kk(xk)

2 = ||Dnx||22,

119

where Dn is a diagonal matrix containing on its diagonal the elements (Dn)kk =√
λkqkwnk . We may then rewrite the algorithm as:

xn+1 = arg min
x
||Ax− b||22 + ||Dnx||22,

which can be solved via the system of equations:

(ATA+ (Dn)T (Dn))xn+1 = AT b

. Since Dn is diagonal this is equivalent to setting Φn = (Dn)2 where Φn
k,k = λkqkw

n
k

and solving (ATA+ Φn)xn+1 = AT b at each iteration. This can then be solved using

for example the conjugate gradient scheme, reusing the previous iterate as the starting

iterate for the CG scheme at each iteration.

Lemma 4.5.1. Using the surrogate functional:

G(x,w, ε) = ||Ax− b||22 +
N∑
k=1

λk

(
qkwk((xk)

2 + ε2) + (2− qk)(wk)
qk
qk−2

)

we can recover the weights:

(wn+1)k =
1

((xn+1
k)2 + (εn+1)2)

2−qk
2

using the minimization procedure:

wn+1 = arg min
w
G(xn+1, w, εn+1)

and the iterative scheme:

xn+1 = arg min
x

{
||Ax− b||22 +

N∑
k=1

λkqkw
n
k (xk)

2

}

120

using the minimization procedure:

xn+1 = arg min
x
G(x,wn, εn).

Proof. First, for the weights, we have wn+1 = arg minwG(xn+1, w, εn+1) and only the

last term of G has a dependence on w. We have:

∂

∂wk

(
qkwk((xk)

2 + ε2) + (2− qk)(wk)
qk
qk−2

)
= 0

=⇒ qk((xk)
2 + ε2) + (2− qk)

qk
qk − 2

(wk)
qk
qk−2

−1
= 0

=⇒ wk =
1

((xk)2 + ε2)
2−qk

2

since
qk

qk − 2
− qk − 2

qk − 2
=

2

qk − 2
.

Now consider the functional:

G(x,wn, εn) = ||Ax− b||22 +
N∑
k=1

λk

(
qkw

n
k ((xk)

2 + (εn)2) + (2− qk)(wnk)
qk
qk−2

)
;

evaluating this at x = xn gives

G(xn, wn, εn) = ||Ax− b||22 + 2
N∑
k=1

λk((x
n
k)2 + (εn)2)

qk
2 ,

since:

qkw
n
k ((xk)

2 + (εn)2) + (2− qk)(wnk)
qk
qk−2

= qk((x
n
k)2 + (εn)2)(

qk−2

2
+ 2

2) + (2− qk)((xnk)2 + (εn)2)

(
qk−2

2

qk
qk−2

)

= 2((xnk)2 + (εn)2)
qk
2 .

121

We note that as n→∞, and assuming xn → x and εn → 0, we have that:

lim
n→∞

G(xn, wn, εn) = ||Ax− b||22 + 2
N∑
k=1

λk(xk)
qk ,

so we recover the functional we would like to minimize.

Next, let us check that the statement:

xn+1 = arg min
x
G(x,wn, εn)

recovers the iterative scheme. Consider:

G(x,wn, εn) = ||Ax− b||22 +
N∑
k=1

λk

(
qkw

n
k ((xk)

2 + (εn)2) + (2− qk)(wnk)
qk
qk−2

)
.

Keeping from above only the terms that depend on x, we see that we recover:

xn+1 = arg min
x

{
||Ax− b||22 +

N∑
k=1

λkqkw
n
k (xk)

2

}
.

Lemma 4.5.2. The G functions satisfy G(xn+1, wn+1, εn+1) ≤ G(xn, wn, εn).

Proof. First note the relations:

xn+1 = arg min
x
G(x,wn, εn)

wn+1 = arg min
w
G(xn+1, w, εn+1)

εn+1 ≤ εn.

122

Applying the above, we have:

G(xn+1, wn+1, εn+1) ≤ G(xn+1, wn, εn+1) ≤ G(xn+1, wn, εn) ≤ G(xn, wn, εn).

Lemma 4.5.3. The iterates (xn) are bounded in norm.

Proof. To prove that the (xn)’s are bounded, consider:

G(xn, wn, εn) = ||Axn − b||22 + 2
N∑
k=1

λk
(
(xnk)2 + (εn)2

) qk
2 .

We have that λk|xnk |qk ≤ G(xn, wn, εn). By Lemma 4.5.2 it follows that:

|xnk | ≤
(

1

λk
G(xn, wn, εn)

) 1
qk

≤
(

1

λk
G(x0, w0, ε0)

) 1
qk

.

This implies that: ||xn||1 =
N∑
k=1

|xnk | ≤ N

(
1

λk
G(x0, w0, ε0)

) 1
qk

= C. Thus, the `2-

norm of xn is bounded as well.

Lemma 4.5.4. There exists a strictly increasing sequence (nl) such that for every

member of the subsequence we have:

εnl+1 = |G(xnl−1, wnl−1, εnl−1)−G(xnl , wnl , εnl)|
γ
2 + αnl+1.

Additionally, there is a subsequence of this sequence (nlr) such that:

lim
r→∞

x
nlr
k = xk.

123

Proof. By the definition of the εn’s:

εn = min(εn−1, |G(xn−2, wn−2, εn−2)−G(xn−1, wn−1, εn−1)|
γ
2 + αn).

We have that εn → 0 since by Lemma 4.5.2 we know that |G(xn−2, wn−2, εn−2) −

G(xn−1, wn−1, εn−1)| → 0 and αn → 0 since 0 < α < 1. It follows that a sequence

(nl) with the desired properties must exist, for otherwise, there would be some N0

such that for n ≥ N0, εn+1 = εn and the sequence of ε’s would not converge to zero.

The fact that nlr exists is a consequence of the boundedness of the sequence (xnl),

which implies the existence of a weakly converging subsequence (strongly in a finite

dimensional space).

Lemma 4.5.5. Let snk = ((xnk)2 + (εn)2)
1
2 . Then there exists η ∈ R < ∞ such that

snk ≤ η for all n, k.

Proof. Since snk = ((xnk)2 + (εn)2)
1
2 and (xn) are bounded, we have:

snk ≤ |xnk |+ εn ≤ ||xn||+ ε0 ≤ η.

Lemma 4.5.6. Consider the sequence (nl) introduced in Lemma 4.5.4. For each

element nl of the sequence, εnl+1 is bounded below as follows:

εnl+1 ≥ C(snlk)qkγ(snl−1
k − snlk)2γ, for each k ∈ {1, . . . , N}.

Proof. Recall that we have:

εnl+1 = |G(xnl−1, wnl−1, εnl−1)−G(xnl , wnl , εnl)|
γ
2 + αnl+1.

124

Based on the inequalities derived earlier:

|G(xn, wn, εn)−G(xn+1, wn+1, εn+1)| ≥ |G(xn+1, wn, εn+1)−G(xn+1, wn+1, εn+1)|.

Decomposing the (non-negative) difference G(xn+1, wn, εn+1) − G(xn+1, wn+1, εn+1)

into a sum:

G(xn+1, wn, εn+1)−G(xn+1, wn+1, εn+1) =
N∑
k=1

λkT
n
k ,

and then we compute a lower bound on each of the T nk . Recall that:

G(x,w, ε) = ||Ax− b||22 +
N∑
k=1

λk

(
qkwk((xk)

2 + ε2) + (2− qk)(wk)
qk
qk−2

)
.

We have:

G(xn+1, wn+1, εn+1) = ||Axn+1 − b||22 + 2
N∑
k=1

λk((x
n+1
k)2 + (εn+1)2)

qk
2

G(xn+1, wn, εn+1) = ||Axn+1 − b||22

+
N∑
k=1

λk

(
qkw

n
k ((xn+1

k)2 + (εn+1)2) + (2− qk)(wnk)
qk
qk−2

)
.

Next, recall that:

snk = ((xnk)2 + (εn)2)
1
2 =⇒ wnk = (snk)qk−2 =⇒ (wnk)

qk
qk−2 = (snk)qk .

and we can rewrite:

G(xn+1, wn+1, εn+1) = ||Axn+1 − b||22 + 2
N∑
k=1

λk(s
n+1
k)qk

G(xn+1, wn, εn+1) = ||Axn+1 − b||22 +
N∑
k=1

λk
(
qk(s

n
k)qk−2(sn+1

k)2 + (2− qk)(snk)qk
)
.

125

Thus, G(xn+1, wn, εn+1)−G(xn+1, wn+1, εn+1) =
N∑
k=1

λkT
n
k with

T nk =
(
qk(s

n
k)qk−2(sn+1

k)2 + (2− qk)(snk)qk − 2(sn+1
k)2

)
.

We now find a lower bound on T nk . Introduce the substitutions:

x = sn+1
k , t = snk − sn+1

k =⇒ snk = x+ t.

Note that by Lemma 4.5.5 x ≤ η and (x+ t) ≤ η so in particular x+ ct ≤ η for any

c ∈ (0, 1). Using the substitutions above and dropping the subscripts, we have that:

T = q(x+ t)q−2x2 + (2− q)(x+ t)q − 2xq

= (x+ t)q−2
(
qx2 + (2− q)(x+ t)2 − 2xq(x+ t)2−q)

= (x+ t)q−2x2

(
q + (2− q)(1 +

t

x
)2 − 2(1 +

t

x
)2−q

)
.

We would like to bound the inside of the () and consequently all of T . We do this by

introducing a function Φ defined by:

Φ(u) = q + (2− q)
(

1 + u
t

x

)2

− 2

(
1 + u

t

x

)2−q

.

126

Then, by construction Φ(1) =
(
q + (2− q)(1 + t

x
)2 − 2(1 + t

x
)2−q) and Φ(0) = 0.

Also:

Φ′(u) =
t

x

(
2(2− q)(1 + u

t

x
)− 2(2− q)(1 + u

t

x
)1−q

)
=⇒ Φ′(0) = 0

Φ′′(u) =

(
t

x

)2(
2(2− q)− 2(2− q)(1− q)(1 + u

t

x
)1−q

)
= 2(2− q)

(
t

x

)2(
1 + (q − 1)(1 + u

t

x
)−q
)

= 2(2− q)t2xq−2
(
x−q + (q − 1)(x+ ut)−q

)
≥ 2(2− q)t2xq−2qη−q

for u ∈ (0, 1) where since x ≤ η and x + t ≤ η, we have x + ut ≤ η. It follows from

Taylor’s theorem that:

Φ(1) = Φ(0) + Φ′(0) +
1

2
Φ′′(u) ≥ 2(2− q)qt2xq−2η−q , for some u ∈ (0, 1).

From the above, we can write the following lower bound for all of T :

T ≥ 2(2− q)qt2η−qxq−2x2(x+ t)q−2 ≥ (2− q)qxqt2η−2.

Going back to the original notation we have the following estimate:

T nk ≥ (2− qk)qkη−2(snk − sn+1
k)2(sn+1

k)qk .

127

Notice that C = (2− qk)qkη−2 does not depend on n. Summarizing the above deriva-

tions, we have shown that:

|G(xn, wn, εn)−G(xn+1, wn+1, εn+1)|

≥ |G(xn+1, wn, εn+1)−G(xn+1, wn+1, εn+1)|

=
N∑
k=1

λk
(
qk(s

n
k)qk−2(sn+1

k)2 + (2− qk)(snk)qk − 2(sn+1
k)2

)
=

N∑
k=1

λkT
n
k

≥ C
N∑
k=1

(snk − sn+1
k)2(sn+1

k)qk .

It then follows from the definition of εn:

εn = min(εn−1, |G(xn−2, wn−2, εn−2)−G(xn−1, wn−1, εn−1)|
γ
2 + αn),

and the definition of the subsequence nl that we have the estimate:

(εnl+1)2 =
[
|G(xnl−1, wnl−1, εnl−1)−G(xnl , wnl , εnl)|

γ
2 + αnl

]2

≥ |G(xnl−1, wnl−1, εnl−1)−G(xnl , wnl , εnl)|γ

≥ C

(
N∑
k=1

(snlk)qk(snl−1
k − snlk)2

)γ

≥ C(snlk)qkγ(snl−1
k − snlk)2γ.

We will also use the following standard lemma, proved here for the sake of com-

pleteness.

Lemma 4.5.7. Let F : R++ → R be twice differentiable with F ′′(y) > 0. Let ȳ > 0

be the (unique) minimizer of F . If yn is a convergent sequence such that the limit z

is positive and |F (yn)− F (ȳ)| → 0, then z = ȳ.

128

Proof. Note that F ′′ > 0 implies that F is strictly convex, so F has at most one

minimizer. Hence it suffices to show that z = ȳ. In fact,

0 ≤ |F (ȳ)− F (z)| ≤ |F (ȳ − F (yn)|+ |F (yn)− F (z)|.

Since |F (ȳ) − F (yn)| → 0 by assumption and |F (yn) − F (z)| → 0 by the continuity

of F and assumption of yn → z, we have thus |F (ȳ) − F (z)| = 0. Since F has only

one minimizer, we have that z = ȳ.

Lemma 4.5.8. In the IRLS SYS iteration, we have that for the subsequence nlr and

for the case when limr→∞ x
nlr
k = xk 6= 0, the weights wnlr satisfy:

lim
r→∞

(
w
nlr−1
k − wnlrk

)
= 0.

Proof. We start by looking at the k-th term of the difference between G(xn, wn, εn)

and G(xn, wn−1, εn) and we use telescoping sums. We have:

G(x,w, ε) = ||Ax− b||2 +
N∑
k=1

λkqk

(
wk((xk)

2 + (εk)
2) +

2− qk
qk

w
qk
qk−2

k

)
.

Now if we make the substitution βnk = (xnk)2 + (εnk)2 and plug in the weights wnk =

(βnk)
qk−2

2 then we recover:

G(xn, wn, εn) = ||Axn − b||22 + 2
N∑
k=1

λk(β
n
k)

qk
2

G(xn, wn−1, εn) = ||Axn − b||22 +
N∑
k=1

λkqk

(
wn−1
k βnk +

2− qk
qk

(wn−1
k)

qk
qk−2

)
.

129

If we now take the difference of the two, the first terms drop out; taking the k-th

term in the remainder gives:

Γk =
1

λk

(
G(xn, wn−1, εn)−G(xn, wn, εn)

)
k

=
1

λk

(
qkβ

n
kw

n−1
k + (2− qk)(wn−1

k)
qk
qk−2 − 2(βnk)

qk
2

)
=

1

λk
(βnk)

qk
2

(
qkw

n−1
k (βnk)

2−qk
2 + (2− qk)(wn−1

k (βnk)
2−qk

2)
qk
qk−2 − 2

)
.

Now note that since we have G(xn, wn, εn) ≤ G(xn+1, wn+1, εn+1) (and based on the

inequalities in Lemma 4.5.1) we then have:

∞∑
n=1

Γk ≤
∞∑
n=1

1

λk

(
G(xn−1, wn−1, εn−1)−G(xn, wn, εn)

)
<∞.

Therefore we have that:

wn−1
k (βnk)

2−qk
2 +

2− qk
qk

(
(wn−1

k)(βnk)
2−qk

2

) qk
qk−2 − 2

qk
→ 0 as n→∞. (4.5.1)

Now replace n by the subsequence nlr and let θ
nlr
k = w

nlr−1
k (β

nlr
k)

2−qk
2 =

w
nlr
−1

k

w
nlr
k

. The

denominator stays bounded below strictly above zero since we assumed xk 6= 0. Then

we can rewrite (4.5.1) as:

θ
nlr
k +

2− qk
qk

(θ
nlr
k)

qk
qk−2 − 2

qk
→ 0.

Let the strictly convex function F : R++ → R be defined by:

F (θ) = θ +
2− qk
qk

θ
qk
qk−2 .

130

Since F (1) = 1 + 2−qk
qk

= 2
qk

we have that liml→∞ |F (θ
nlr
k)− F (1)| → 0. Since 1 is the

unique minimizer of F , by Lemma 4.5.7 we conclude that:

lim
l→∞
|θnlrk − 1| → 0 =⇒ lim

l→∞

(
w
nlr−1
k − wnlrk

)
→ 0.

Lemma 4.5.9. The limit of the converging subsequence x = liml→∞ x
nl of IRLS

satisfies the optimality conditions for the functional ||Ax− b||22 + 2
N∑
k=1

λk|xk|qk , 1 ≤

qk < 2:

(AT (b− Ax))k = λk sgn(xk)qk|xk|qk−1 , xk 6= 0

(AT (b− Ax))k = 0 , xk = 0 (qk > 1)∣∣(AT (b− Ax))k
∣∣ ≤ λk , xk = 0 (qk = 1)

(4.5.2)

Proof. Consider the subsequence (nlr). For this subsequence we have from the above

lemma that:

εnlr+1 = |G(xnlr−1, wnlr−1, εnlr−1)−G(xnlr , wnlr , εnlr)|
γ
2 + αnlr+1

and limr→∞ x
nlr = x. For each k ∈ {1, . . . , N}, we consider three separate cases,

depending on the limit x
nlr
k as r →∞ and on the value of qk. The first case is when

limr→∞ x
nlr
k 6= 0. The second case is when limr→∞ x

nlr
k = 0 and qk > 1. The final case

is when liml→∞ x
nlr
k = 0 and qk = 1. Recall the iteration procedure:

xn = arg min
x
||Ax− b||22 +

∑
k

qkλkw
n−1
k (xk)

2

131

Upon differentiation with respect to xk we have: (AT (Axn − b))k + qkλkw
n−1
k xnk = 0

so that plugging in (nlr) and taking the limit as r →∞ we have:

1

qkλk
(AT (b− Ax))k = lim

r→∞
w
nlr−1
k x

nlr
k .

By Lemma 4.5.6 we have the lower bound:

(εnl+1)2 ≥ C(snlk)qkγ(snl−1
k − snlk)2γ.

First, consider the case limr→∞ x
nlr
k = xk 6= 0. In this case, we have, by Lemma

4.5.8, that limr→∞

(
w
nlr−1
k − wnlrk

)
= 0 together with w

nlr
k ≥ C > 0 for all r, from

which it follows that:

lim
r→∞

x
nlr
k w

nlr−1
k = lim

r→∞
x
nlr
k w

nlr
k

w
nlr−1
k

w
nlr
k

= lim
r→∞

x
nlr
k w

nlr
k lim

r→∞

w
nlr−1
k

w
nlr
k

= lim
r→∞

x
nlr
k w

nlr
k .

The last limit can now be evaluated directly:

lim
l→∞

xnlk w
nl
k = lim

l→∞

xnlk

((xnlk)2 + (εnlk)2)
2−qk

2

=
x

((xk)2 + 0)
2−qk

2

=
xk

|xk|2−qk
=
|xk| sgn(xk)|
|xk|2−qk

= sgn(xk)|xk|qk−1.

We thus recover the correct condition when xk 6= 0, namely that: (AT (b − Ax))k =

λkqk sgn(xk)|xk|qk−1.

Consider now cases 2 and 3 for which limr→∞ x
nlr = xk = 0. For case 2, qk > 1

and for case 3, qk = 1. We would like to show that (AT (b− Ax))k = 0 if qk > 1 and

1
λk
|(AT (b− Ax))k| ≤ 1 if qk = 1. We set:

Γk = lim
r→∞

(w
nlr−1
k x

nlr
k)2

132

For case 2, we would like to show that Γk = 0. To do this, we shall suppose that

Γk > 0 and derive a contradiction to limr→∞ x
nlr = xk = 0. So let’s assume Γk > 0.

For some 0 < ε < 1, there exists some r0 large enough such that for all r > r0, we

have then that:

(w
nlr−1
k x

nlr
k)2 ≥ Γk(1− ε).

From this it follows that using snk = (wnk)
−1

2−qk :

|xnlrk |
2 ≥ Γk(1− ε)(snlr−1)2(2−qk) = Γk(1− ε)

(
(x

nlr−1
k)2 + (εnlr−1)2

)2−qk

> Γk(1− ε)
(

(x
nlr−1
k)2 + (εnlr+1)2

)2−qk
,

where we have used εnlr−1 ≥ εnlr ≥ εnlr+1. From the upper bound that we have

previously derived on εnl+1 we have:

(εnlr+1)2 ≥ C(snlr)qkγ(s
nlr−1
k − snlrk)2γ.

It follows that:

|xnlrk |
2

2−qk > (Γk(1− σ))
1

2−qk

(
(x

nlr−1
k)2 + C(snlr)qkγ(s

nlr−1
k − snlrk)2γ

)
> (Γk(1− σ))

1
2−qk

(
(x

nlr−1
k)2 + C(|xnlrk |)

qkγ(s
nlr−1
k − snlrk)2γ

)
> Γ̃kC|x

nlr
k |

qkγ(s
nlr−1
k − snlrk)2γ where Γ̃k = (Γk(1− σ))

1
2−qk .

Let βk = 2
2−qk
− qkγ and assume that βk > 0 and βk

2γ
> 1. (We will show later that

this holds with the choice of γ that we have prescribed.) Then we have:

|xnlrk |
βk > Γ̃kC|s

nlr−1
k − snlrk |

2γ =⇒ |snlr−1
k − snlrk | < (Γ̃kC)

−1
2γ |xnlrk |

βk
2γ

s
nlr−1
k ≥ s

nlr
k − |s

nlr−1
k − snlrk | > |x

nlr
k | − (Γ̃kC)

−1
2γ |xnlrk |

βk
2γ ,

133

since s
nlr
k > |xnlr |. Because βk

2γ
> 1 and x

nlr
k → 0, we have that |xnlrk |

βk
2γ goes to zero

faster than |xnlrk |. Thus, we can pick a sufficiently large r such that |xnlrk |
βk
2γ < σ. We

then have:

s
nlr−1
k > (1− σ)|xnlrk |.

We already saw that for sufficiently large r, and assuming Γk > 0, we had: |xnlrk |2 ≥

Γk(1 − σ)(s
nlr−1
k)2(2−qk), so that |xnlrk |

1
2−qk ≥ Γ̃ks

nlr−1
k . Combined with the previous

argument this implies that:

|xnlrk |
1

2−qk > Γ̃k(1− σ)|xnlrk |.

Now, for the case 1 < qk < 2: 1
2−qk

> 1. This means we can divide both sides

of the above by |xnlrk |. This would then imply that |xnlrk | ≥ C > 0 for all r, in

contradiction to the condition that limr→∞ x
nlr
k = 0. This means that we must have

Γk = 0 when 1 < qk < 2 and limr→∞ x
nlr
k = 0. Recalling that 1

qkλk
(AT (b − Ax))k =

limr→∞w
nlr−1
k x

nlr
k , this then implies that:

Γk = lim
r→∞

(w
nlr−1
k x

nlr
k)2 = 0 =⇒ lim

r→∞
w
nlr−1
k x

nlr
k = 0 =⇒ (AT (b− Ax))k = 0

which is the proper optimality condition for this case.

Finally, consider the case limr→∞ x
nlr
k = 0 and qk = 1. We then have:

|xnlrk |
1

2−qk > Γ̃k(1− σ)|xnlrk |

=⇒ |xnlrk | > Γ̃k(1− σ)|xnlrk | = Γk(1− σ)2|xnlrk |

=⇒ Γk(1− σ)2 < 1.

134

This implies that:

Γk = lim
r→∞

(w
nlr−1
k x

nlr
k)2 ≤ 1 =⇒ lim

r→∞
|wnlr−1

k x
nlr
k | ≤ 1 =⇒ 1

λk
|(AT (b− Ax))| ≤ 1

which is the condition we need for qk = 1.

It remains to check that βk = 2
2−qk
− qkγ satisfies the conditions: βk > 0 and

βk
2γ
> 1 for our choice of γ:

0 < γ <
2

4− q2
k

The condition βk
2γ
> 1 is equivalent to 1

γ(2−qk)
− qk

2
> 1 and this implies βk = 2

2−qk
−

qkγ > 0. The two conditions on βk are thus equivalent, and we need γ to satisfy only:

1

γ(2− qk)
− qk

2
> 1 =⇒ 1

γ(2− qk)
>

2 + qk
2

=⇒ γ <
2

4− q2
k

.

Hence, the choice 0 < γ < 2
4−q2k

satisfies the conditions used in the above proof.

4.6 More on Convergence

In the previous sections we have shown that for both of the schemes, there exists a

converging subsequence and that the limit point of this subsequence is a minimizer

of the functional the algorithm is designed to minimize. If the functional is convex

(as is the case if all qk ≥ 1) then this minimizer is indeed a global minimizer. The

subsequence we pick was indeed a special subsequence. It was chosen in a way that

put special conditions on the εn’s. We picked a subsequence nl of the iterates n such

that the members of this subsequence satisfy: εnl+1 < εnl . However, since the limit

of this special subsequence is a minimizer: i.e. F (x̄) ≤ F (x), we can show that for

135

any converging subsequence (xmj), the limit point is also a minimizer of the cost

functional.

Lemma 4.6.1. Suppose that (mj) is a sequence of strictly increasing positive integers

such that the subsequence xmj from either of the IRLS schemes are convergent, i.e.,

xmj → x̂. Then F (x̄) = F (x̂), where x̄ = liml→∞ x
nlr and (nlr) is given in Lemma

4.5.4.

Proof. First note that F is continuous, so we have F (xmj)→ F (x̂). Since mj →∞,

for every r, there exists jr such that mjr > nlr , which implies

F (xmjr) ≤ G(xmjr , xmjr , wmjr , εmjr) ≤ G(xnlr , xnlr , wnlr , εnlr)

= ||Axnlr − b||22 + 2
N∑
k=1

λk((x
nlr
k)2 + (εn)2)

qk
2 .

Taking the limit of both sides, we have that:

F (x̂) ≤ F (x̄) = min
x
F (x),

since εn → 0. Hence F (x̂) = F (x̄).

Note that in the above lemma, while F (x̃) = F (x̄), it is possible that that x̃ 6= x̄.

However, in the case when F (x) has a unique minimizer (such as the case when all

qk > 1 in the generalized functional) the above result leads to a powerful conclusion.

In that case, lemma 4.6.1 says that all converging subsequences go to the minimizer.

In fact, this together with boundedness then implies that the iterates themselves

converge to the minimizer. The proof relies on the lemma below:

Lemma 4.6.2. Suppose (xn) is a bounded sequence in RN , and all its convergent

subsequences converge to the same limit x̄. Then (xn) is a convergent sequence with

limit x̄.

136

Proof. Suppose xn 6→ x̄. Then ∃ε > 0 and subsequence xnk s.t. |xnk − x̄| > ε for all

nk but xnk is bounded also, so there exists a convergent subsequence xnkj which goes

to x̄. Hence the above is impossible and xn → x̄.

We now state a convergence result about the sequence of iterates for the first IRLS

algorithm, one that relies only on identifying a single convergent subsequence of the

iterates (xnj) with “finite jumps”. By “finite jump”, we mean that there exists a

constant K such that |nj+1 − nj| ≤ K for all j; in other words, the magnitude of

jump from one iterate to the next in the subsequence does not go to infinity. Such a

subsequence can often be observed in practice.

Lemma 4.6.3. Let (xn) be a sequence that satisfies ||xn − xn+1|| → 0 as n → ∞.

Suppose that (xn) contains a subsequence (xnj) such that xnj → x̄ as j → ∞ and

|nj+1−nj| ≤ K for all j. where K <∞. Then (xn) is convergent sequence with limit

x̄.

Proof. Fix any ε > 0. We show that there exists an Nε so that for all n ≥ Nε we have

that ||xn − x̄|| < ε.

By the assumption that xnj → x̄ as j →∞, there exists a constant M1 such that for

j ≥ M1, we have that ||xnj − x̄|| < ε
2
. Also there exists a constant N2 such that for

n > N2, we have ||xn − xn+1|| < ε
2K

. Take any N3 ≥ max(N2, nM1+1); then for any

n > N3, pick integer j such that nj > n ≥ nj−1, |nj − n| ≤ nj − nj−1 ≤ K holds

because of the assumption that |nj+1 − nj| ≤ K for all j. Hence:

||xnj − xn||2 =

nj−n∑
l=1

||xn+l − xn+l−1||2 ≤
nj−n∑
l=1

ε

2K
= (nj − n)

ε

2K
≤ ε

2
.

Finally this means that:

||xn − x̄||2 = ||xn − xnj + xnj − x̄|| ≤ ||xn − xnj ||+ ||xnj − x̄|| ≤ ε

2
+
ε

2
= ε.

137

Now we can state a convergence result for the first IRLS algorithm under the

“finite jump” assumption.

Proposition 4.6.4. Let (xn) be a sequence generated by (IRLS) with a given A ∈

Rm×N satisfying ||A||2 ≤ 1 and b ∈ Rm. If there exists a convergent sequence (xml)

of (xn) such that |ml+1 −ml| < K for all l, where K <∞, then (xn) converges to a

minimizer of F (x) defined in (4.4.1).

Proof. By Lemma 4.4.3, we have that ||xn − xn−1|| → 0. By Lemma 4.6.1, (xml)

converges to a minimizer x̂ of F . It follows from Lemma 4.6.3 that (xn) also converges

to x̂.

4.7 Chapter Remarks and Conclusions

In this chapter, two new Iteratively Reweighted Least Squares Algorithms were in-

troduced and their convergence properties were thoroughly analyzed. This chapter

has several new contributions. First, the algorithms are applied to a more general

sparsity promoting functional:

F (x) = ||Ax− b||22 + 2
N∑
k=1

λk|xk|qk ,

for 1 ≤ qk < 2. The `1 functional that was previously discussed is a special case

of the above functional. Additionally, while convergence has been shown only for

1 ≤ qk < 2, it is possible to use the algorithms with qk < 1, perhaps starting with

convex minimization (i.e. qk ≥ 1) and then moving to non-convex minimization later

in the iteration. Recently, several papers have confirmed that there are numerical

advantages to non-convex sparse minimization, for example [9]. Perhaps the most

138

important contribution of this chapter is the detailed convergence analysis, which

does not assume restrictive assumptions on the matrix A, only that its spectral norm

be less than one, which is easily accomplished by rescaling. Finally, while the first

IRLS scheme is somewhat similar in form to the basic ISTA algorithm, the second

scheme is more powerful since at each iteration it involves a linear system solve, so the

fact that convergence is established without restrictive assumptions is an important

example that such a class of algorithms is possible for the type of problems we consider

in this thesis. That the convergence analysis for the second algorithm holds without

showing that ||xn+1 − xn||2 → 0 is also of analytical interest. For both algorithms,

we showed that when qk > 1 for all k, the sequence of iterates xn converges to the

unique minimizer. We show some numerical expamples with the algorithms in the

next chapter.

139

Chapter 5

NUMERICS AND IDEAS FOR

LARGE SCALE PROBLEMS

5.1 Overview

In the past chapters we have listed several different algorithms. These included ex-

isting algorithms (such as FISTA, DALM, and Coordinate Descent) and several new

algorithms (FIVTA and the two IRLS schemes) which we have introduced and for

which we have provided detailed convergence analysis. In this chapter we discuss

numerics and some useful ideas for large scale problems, where the matrix A may

have many thousands or several millions of columns. We discuss an inverse matrix

replacement strategy for the second IRLS scheme where the matrix (ATA + Φn)−1

is replaced by the inverse of a smaller matrix when A is under-determined. We also

discuss how the idea of using different weights for different coefficients, introduced in

the previous chapter for IRLS, can be extended to other algorithms. In particular

we discuss a weighted dual approach (a reweighted norm approach for the DALM

algorithm). We make some comments on using coordinate descent for large systems

140

(in particular, we mention support identification and column norm estimation). We

also discuss a fast randomized approach for a rank-k SVD approximation.

5.2 Inverse Matrix Replacement for IRLS SYS

The second IRLS scheme involves at each iteration a linear solve:

xn+1 = (ATA+ Φn)−1AT b

with (Φn)k,k = qkλkw
n
k , as discussed in the last chapter. We note that between

different iterations, the only thing that changes in the above formula is the diagonal

portion Φn. Some possibilities exist to make use of this fact and we mention one

here, that may be of use when A is a large underdetermined matrix. When A is of

size m × N (with N > m), the matrix ATA is of size N × N and hence very large.

This does not present a major challenge unless we would like to compute the explicit

formula for this inverse, which in practice we would probably not do. However, we

mention here that it is possible to express the inverse of this matrix in terms of a

smaller inverse, using the Woodbury matrix inverse identity which we state below:

Lemma 5.2.1. Take D ∈ Rn×n, U ∈ Rn×k, C ∈ Rk×k, and V ∈ Rk×n. Assume that

D and C are invertible. Then D+UCV is invertible if and only if C−1 +V D−1U is,

and the following identity holds:

(D + UCV)−1 = D−1 −D−1U
(
C−1 + V D−1U

)−1
V D−1.

141

Proof. The easiest proof of the identity is given using block matrix inversion as sug-

gested in [26]. We give it here for completeness. Consider the block matrix system:

D U

V −C−1

X
Y

 =

I
0

 ,

which reduces to:

DX + UY = I
(

=⇒ X = D−1(I − UY)
)

and V X − C−1Y = 0 (=⇒ Y = CVX) .

Plugging Y = CVX into the first equation we get: (D + UCV)X = I and plugging

X = D−1(I − UY) into the second equation we get: V D−1(I − UY) = C−1Y . This

can be expanded as:

V D−1 − V D−1UY = C−1Y =⇒ V D−1 = (V D−1U + C−1)Y

=⇒ (V D−1U + C−1)−1V D−1 = Y.

We now substitute this Y into DX + UY = I to get:

DX+U(V D−1U+C−1)−1V D−1 = I =⇒ X = D−1−D−1U(V D−1U+C−1)−1V D−1.

But from (D+UCV)X = I we have that X = (D+UCV)−1 so we have the identity:

(D + UCV)−1 = D−1 −D−1U(V D−1U + C−1)−1V D−1.

142

Now we use the above identity to express the form (ATA + Φn)−1AT in terms of a

different form which involves the inverse of a much smaller matrix when the matrix

A has more columns than rows.

Lemma 5.2.2. Using the Woodbury matrix inverse formula, we have that:

(ATA+ Φn)−1AT = (Φn)−1AT
(
Im + A(Φn)−1AT

)−1
.

Proof. If D, C and D + UCV T are invertible, then

(D + UCV T)−1 = D−1 −D−1U(C−1 + V TD−1U)−1V TD−1. (5.2.1)

In particular, if C = Ik, then

(D + UV T)−1 = D−1 −D−1U(I + V TD−1U)−1V TD−1. (5.2.2)

Then letting U = AT and V T = A we have that:

(D + ATA)−1 = D−1 −D−1AT (Im + AD−1AT)−1AD−1

=⇒ (D + ATA)−1AT = D−1AT −D−1AT (Im + AD−1AT)−1AD−1AT

= D−1AT (Im − (Im + AD−1AT)−1AD−1AT).

Notice that:

Im = (Im + AD−1AT)−1(Im + AD−1AT)

= (Im + AD−1AT)−1 + (Im + AD−1AT)−1AD−1AT

=⇒ Im − (Im + AD−1AT)−1AD−1AT = (Im + AD−1AT)−1,

143

Hence, we have that:

(D + ATA)−1AT = D−1AT (Im + AD−1AT)−1.

Setting D = Φn, the result in the lemma follows.

Thus, when A has more columns than rows and A ∈ Rm×N then the expression on

the left, which involves an inverse of an N ×N matrix, can be expressed in terms of

an inverse matrix of size m×m which can be significantly smaller when m < N .

5.3 Coordinate Descent Method, Support Identi-

fication, and Column Norm Estimation

We now discuss some simple ideas for the coordinate descent algorithm, which are

important for its application to large scale problems. As previously mentioned in

Chapter 1, the idea of the coordinate descent method is that given the objective

functional, say F (x) = F (x1, . . . , xN) = ||Ax−b||22+2τ ||x||1, we update one coordinate

at a time, while fixing all the other coordinates fixed, updating the single chosen

coordinate in a way that the objective value of F is decreased. The formula for

updating the coordinate xj so that the `1 function evaluated at the new vector, with

this coordinate changed, has a value less than or equal to the value at the previous

iteration is given by:

x̄j =
1

||Aj||2
Sτ (βj) with βj =

m∑
l=1

Al,j

(
bl −

∑
k 6=j

Al,kxk

)
.

The method should, however, not be programmed as above, since the above formula

would be too slow for large problems even if direct access to the matrix elements is

144

available. Instead the expression for βj can be rewritten as:

βj =
m∑
l=1

(Aej)l (bl − (Ax)l + (Aej)lxj)

which is a form that can be easily programmed. Above, ej corresponds to the standard

unit vector with a 1 at the j-th location and zeros elsewhere. The scheme however,

would still be slow if the support cannot be estimated. That’s because if the dimension

of the solution is large, than the search space of randomized coordinate descent is also

just as large. On the other hand, if an accurate estimate of the support is available,

then coordinate descent can be used over this presumably much smaller set. The

convergence of the coordinate descent algorithm relies on a random sweep pattern to

choose the next coordinate to be updated; we have found in experiments however, that

when this sweep pattern is restricted to the identified support space, the algorithm

has no convergence issues. We now discuss using coordinate descent with the Iterative

Support Detection (ISD) idea from [44]. The idea of ISD is to run some algorithm

like FISTA for a chosen number of iterations and than take all entries with absolute

magnitude above a certain tolerance as the support set. Once this set has been

identified we no longer wish to penalize (or threshold) the coefficient in this set and

we run the algorithm again penalizing entries only outside this support set.

Algorithm 3: ISD Algorithm
i← 0;
J ← {1, 2, . . . , n};
repeat

x(i) ← arg minx{‖Ax− b‖2
2 + 2τ‖xJ ‖1};

Update ε;
J ← {j : |x(i)

j | < ε};
until converged ;

The main step of the ISD algorithm x(i) ← arg minx{‖Ax − b‖2
2 + 2τ‖xJ ‖1} can

be implemented in a simple way using the IRLS scheme. We use the generalized

145

functional version:

||Ax− b||22 + 2
N∑
k=1

λk|xk|qk

with qk = 1 and λk = τ only for k ∈ J , otherwise set λk = 0. We refer to such an

algorithm as IRLS ISD. The ISD scheme critically depends on the update rule for ε.

Two simple formulations are proposed in the above paper. The first is simply:

ε← ‖x
(i)‖∞
3i

which often leads to acceptable results. On the other hand, it is rather very arbitrary.

Another rule is to look for the smallest (component number) k such that |(x(s))k+1|−

|(x(s))k| > τ where x(s) is the sorted sequence of the solution at some iterate, sorted

by absolute magnitude. We then set ε = |(x(s))k|. This scheme is advertised to

perform well mostly for signals with a fast decaying distribution of nonzero values,

although we have seen that this scheme can be used on various different signals. The

connection with coordinate descent is that at the end of this procedure, it can be

used on the set JC , the complement of J to improve on the ISD solution. The simple

algorithm is stated below.

146

Algorithm 4: ISD Algorithm with M steps of Coordinate Descent
i← 0;
J ← {1, 2, . . . , n};
repeat

x(i) ← arg minx{‖Ax− b‖2
2 + 2τ‖xJ ‖1};

ε← ‖x(i)‖∞
3i

;

J ← {j : |x(i)
j | < ε};

until converged or termination condition reached ;
x← x(i);
u← Ax;
for n = 1, 2, . . .,M do

Pick random index j from J C ;
v = Aej;

βj =
M∑
l=1

vl (bl − ul + vlxj);

xj = 1
||Aj ||2Sτ (βj);

end
x̄← x

We now discuss another issue related to applying the coordinate descent scheme to

large problems: the computation of the column norms ||Aej||2. When the matrix has

several millions of columns, such as the case in our application, computing explicitly

that many column norms becomes time consuming and difficult. If the matrix is not

explicitly available, but is given in the form M = AW−1, as in the application in the

next chapter, W being a chosen wavelet transform, then computing the column norms

is even more expensive since in computing ||Mej||2 = ||AW−1ej||2 we must apply for

every j the Wavelet transform. If the matrix has a lot of columns this approach is not

practical. In practice, however, we do not need to know the column norms exactly,

but only approximately. We now describe a randomized procedure for approximating

the column norms. Let vj = AW−1ej with vj ∈ Rm if A ∈ Rm×N . Now take m basis

vectors ui which span Rm. Then we can write:

vj = c1u1 + · · ·+ cmum with ci = 〈vj, ui〉.

147

Then we have that:

||vj||2 =
m∑
i=1

|〈vj, ui〉|2.

Now we use the approximation:

||vj||2 ≈
m

K

K∑
i=1

|〈vj, ui〉|2

where we only use K basis vectors instead of m and scale appropriately. Substituting

for vj, we have:

||AW−1ej||2 ≈
m

K

K∑
i=1

|〈AW−1ej, ui〉|2.

Now we can make use of the inner product relation:

〈AW−1ej, ui〉 = 〈W−1,tAtui, ej〉 =
[
W−1,tAtui

]
j

where [. . .]j refers to the j-th column of the vector. This means that to approximate

any column norm, we must compute K vectors: pi = W−1,tAtui for i = 1, . . . , K and

then the j − th norm is given approximately by:

||AW−1ej||2 ≈
m

K

K∑
i=1

[pi]
2
j

For the basis vectors ui we can simply take random, normalized vectors in RN since

such vectors (if N is large enough) are likely to be nearly orthogonal. The number of

K matrix vector multiplications required for the estimation varies with the matrix,

but in our experience, can be some multiple of log (m).

148

5.4 Variable Penalty Idea Applied to a Dual Space

Algorithm

In the previous chapter, we showed detailed analysis for two IRLS schemes which

minimize the more general sparsity promoting functional:

||Ax− b||22 + 2
N∑
k=1

λk|xk|qk with 1 ≤ qk < 2.

The advantage of this functional is that it allows us to penalize different coefficients

of the vector in different ways and assuming we know something about the underlying

structure of the sparse solution (for example when it’s expressed with wavelets), we

can use this capability to our advantage. This idea, however, can be applied also to

other algorithms. The difficult part is to show that the convergence results still hold,

which we do not attempt to do here, but we do show that it is possible to apply the

reweighted idea to a dual space method and since DALM is known in practice to be

fast, we expect the presented method to work well numerically. We start first with

the `1-norm and derive the dual of the weighted `1-norm. Below we show that it is

given by a weighted `∞-norm, a result which gives us an idea of how to apply the

DALM scheme for weighted norm minimization.

Lemma 5.4.1. Let w ∈ RN be positive, and consider the weighted `1 norm defined

by:

‖x‖1,w :=
N∑
i=1

wi|xi| ∀x ∈ RN .

Then the dual of ‖ · ‖1,w is given by:

‖y‖∞,w−1 := max
i

{∣∣∣∣ 1

wi
yi

∣∣∣∣} .

149

Proof. Fix any y ∈ RN , and consider

α := max
x∈RN

〈x, y〉
‖x‖1,w

.

For any x ∈ RN ,

〈x, y〉 ≤
N∑
i=1

|wixi|
∣∣∣∣ 1

wi
yi

∣∣∣∣ ≤ max
i

{∣∣∣∣ 1

wi
yi

∣∣∣∣} ‖x‖1,w,

so α ≤ maxi

{∣∣∣ 1
wi
yi

∣∣∣}. To show equality, consider an example where k is such that∣∣∣ 1
wk
yk

∣∣∣ = maxi

{∣∣∣ 1
wi
yi

∣∣∣}. Define

x∗i =

0 if i 6= k,

sgn(yk)

wk
if i = k.

Then ‖x∗‖1,w = 1 and

〈x∗, y〉 =
sgn(yk)

wk
yk =

∣∣∣∣ 1

wk
yk

∣∣∣∣ = max
i

{∣∣∣∣ 1

wi
yi

∣∣∣∣} .
Thus, we have:

α =
〈x∗, y〉
‖x∗‖1,w

= max
i

{∣∣∣∣ 1

wi
yi

∣∣∣∣} .
Therefore the dual norm of ‖ · ‖1,w is given by

‖y‖∞,w−1 := max
i

{∣∣∣∣ 1

wi
yi

∣∣∣∣} .

We recall from Chapter 1, that the dual space approach involves an `∞ norm. Thus,

based on the above result, that norm should in turn be replaced by a weighted norm.

150

Now, instead of the `1 constrained minimization problem, consider the weighted prob-

lem:

min
x
‖x‖1,w s.t. Ax = b. (5.4.1)

We will now perform similar analysis to Chapter 1 and derive the iteration for the

weighted problem. We already have an idea of what it should be based on the above

result. Commenting now on the weights, we can express some power of |x| as:

|x|q = w|x| =⇒ w = |x|q−1 =
(√

x2
)q−1

.

Thus, to allow for zero entries, we can take the weights to be:

wnk =

(√
(xnk)2 + (εn)2

)qk−1

with some choice of εn → 0. Proceeding with the analysis as before, we will have the

Lagrangian:

L(x, y) = ‖x‖1,w + yT (b− Ax).

For each fixed y, we need to compute minx L(x, y). Since the function L(·, y) is

separable, we have

min
x
L(x, y) = bTy + min

x

N∑
i=1

wi|xi| − (ATy)ixi

= bTy + wi

N∑
i=1

min
xi

{
|xi| −

(ATy)i
wi

xi

}

=

bTy if

∣∣∣ (AT y)i
wi

∣∣∣ ≤ 1 ∀ i = 1, . . . , N

−∞ otherwise.

151

where the last equality follows using (2.5.2).Hence the dual of (5.4.1) is

max
y

bTy s.t.

∣∣∣∣(ATy)i
wi

∣∣∣∣ ≤ 1,

or equivalently,

max
y

bTy s.t. ‖ATy‖∞,w−1 ≤ 1. (5.4.2)

Using the same analysis as in Chapter 2, we arrive at:

min
x,y,z

Lµ(y, z;x) := −bTy−xT (z−ATy) +
µ

2
‖z−ATy‖2

2 s.t. ‖z‖∞,w−1 ≤ 1. (5.4.3)

The minimization with respect to x and y and the corresponding update schemes

remain the same as before. However, the minimization with respect to z will now

involve a projection over a different interval. When xn and yn are fixed we have:

min
z
{Lµ(yn, z; yn) : ‖z‖∞,w−1 ≤ 1}

= −bTyn + (yn)TATyn + min
z

{µ
2
‖z − ATyn‖2

2 − (yn)T z : ‖z‖∞,w−1 ≤ 1
}

= −bTyn + (yn)TATyn +
N∑
i=1

min
zi

{µ
2

(zi − (ATyn)i)
2 − yni zi : |zi| ≤ wi

}
,

so that:

arg min
z
{Lµ(yn, z; yn) : ‖z‖∞,w−1 ≤ 1}

=

{
ū : ∀ i, ūi = P[−wi,wi]

(
arg min

zi

{µ
2

(zi − (ATyn)i)
2 − yni zi

})}
=

{
ū : ∀ i, ūi = P[−wi,wi]

(
yni
µ

+ (ATyn)i

)}
.

Numerically, the following algorithm may then be used:

152

Algorithm 5: ALM Algorithm for the Dual of the Reweighted `1 norm.

Input : An m × N matrix A with ||A|| < 1, an initial guess N × 1 vector

x0, a parameter τ <
(
maxi(|(AT b)i|)

)2−p
, tolerance γ, the maximum

number of iterations M , a set of weights qk ∈ R for k = [1, . . . , N].

Output: A sparse vector x̄ with small ||Ax̄− b||2.

ε← 1;
w0 ← (1, . . . , 1);
for n = 0, 1, . . .,M do

for k = 1, . . .,N do

zn+1
k = P[−wnk ,w

n
k]

(
1
β
xnk + (ATyn)k

)
;

end
yn+1 = (AAT)−1

(
Azn+1 − (Axn−b)

β

)
;

xn+1 = xn − β(zn+1 − ATyn+1);
for k = 1, . . .,N do

wn+1
k =

√
(xn+1

k)2 + (ε2)
qk−1

;

end
ε =

√
||xn+1 − xn||2;

if ‖xn − xn+1‖ ≤ γ then
break

end
end
x̄ = xn+1;

The linear solve step above yn+1 = (AAT)−1
(
Azn+1 − (Axn−b)

β

)
may again be approx-

imated by one or more iterations of the conjugate gradient scheme.

153

5.5 Regularization Parameter Estimation

We now discuss the choice of regularization parameter (such as τ in the case of

minimizing the `1 functional ||Ax − b||22 + 2τ ||x||1). In general, the regularization

algorithms discussed in this thesis are useful for noisy right hand sides b, i.e. b =

bt + noise. While the true, uncorrupted, bt may not be known, an estimate of the

noise norm ν = ||noise||2 is often available. In this case, τ is chosen such that the

corresponding solution xτ satisfies ||Axτ − b|| ≈ ν. This is accomplished by means

of a continuation strategy outlined below. This strategy is fast since we reuse the

initial guess at each step as we vary the τ starting from the known minimizer x = 0

at τ = ||AT b||∞:

Algorithm 6: Continuation strategy for picking τ

Input : An m×N matrix A, an m-vector b, the maximum number of outer
iterations M and an estimate of the noise norm ν ≈ ||noise||2.

Output: An estimate of τ̄ such that ||Axτ̄ − b||2 ≈ ||ν||2
τmax = ||AT b||∞;

τmin =
||AT b||∞

10000
;

S =
log τmax − log τmin

M − 1
;

x0 = 0;
for i = 1, . . . ,M do

τi = e(log τmax−S(i−1));
x(i) ← arg min

x
{‖Ax− b‖2

2 + 2τi‖x‖1}; % use x(i−1) as initial point when

solving for x(i)

end
j ← arg min

i

{∣∣‖Ax(i) − b‖2
2 − ν2

∣∣ : 1 ≤ i ≤M
}

;

τ̄ ← τj;

We now describe a technique that may be useful for the estimation of the regular-

ization parameter when an estimate of the norm of the noise is not available. In

this case, one idea is to use the L-curve method, i.e., finding the point of maximum

154

curvature of the (log ||Axτ−b||2, log ||xτ ||1) plot to estimate the right τ [28]. Defining:

ε̄ = log ||xτ ||1 and ρ̄ = log ||Axτ − b||2.

We can then compute the curvature by the formula:

c̄τ = 2
ρ̄′ε̄′′ − ρ̄′′ε̄′

((ρ̄′)2 + (ε̄′)2)
3
2

which can be approximated via finite differences. What we can observe is that the

point of maximum curvature of the log-log plot corresponds roughly to the region

where the solution (with that particular τ) has lowest percent error. Consider for

example the curvature plotted for a simple example using the FISTA algorithm:

0 500 1000 1500
−60

−40

−20

0

20

40

60

original input and noise match solution

input

output

1 0.00025
0

50

100

150

200

tau/max(A
t
 b)

||
A

x
 −

 b
||

2

final residuals vs tau

median
q1
q3
noise

1 0.00025
0

20

40

60

80

100

tau/max(A
t
 b)

p
e

rc
e

n
t

e
rr

o
r

percent errors vs tau

median

q1
q3

1 0.00025
0

100

200

300

400

tau/max(A
t
 b)

c
ru

v
a

tu
re

curvature of log log plot

median
q1
q3

Figure 5.1: Well conditioned staircase input and output at noise matching τ , residuals
versus noise, percent errors versus τ , and curvature versus τ (observe that the lowest
point of percent error curve is roughly where the curvature is highest).

155

5.6 Randomized Low Rank Approximation

In this section, we discuss an efficient implementation of a randomized low rank

approximation algorithm. Such an algorithm is useful when we have to repeatedly

apply a very large not well conditioned matrix to vectors. The idea is to approximate

such a large matrix by the rank-k SVD approximation: A ≈ UΣkV
T where Σk

contains the largest k singular values of A and U and V are orthogonal matrices.

For a large m×N matrix A, the sizes of U , Σk, and V would be m× k, k × k, and

N × k. Once these three matrices are obtained, matrix vector products with A can

be approximated as:

Av ≈ U(Σk(V
Tv)).

When A is a very large under-determined matrix (i.e. m << N) significant cost

savings can be obtained by making this approximation since k can be significantly

less than min(m,N). In general, the computation of the SVD is a very expensive

procedure and cannot be applied to very large matrices. The goal of this section

is to state a randomized algorithm that can be applied to very large matrices and

produce a rank-k SVD approximation in reasonable time. This new algorithm will be

an adaptation of an existing method proposed by Martinsson et al. in [27]. We first

state the algorithm proposed in the above paper:

156

Algorithm 7: Computing a rank-k SVD approximation UΣV T of matrix A
Input : m×N matrix A,

k : the desired rank for approximating A.

Output: m× k matrix U satisfying UTU = Ik,
N × k matrix V satisfying V TV = Ik,
k × k diagonal matrix Σ with nonnegative diagonal entries.

1. Draw an N × k Gaussian random matrix Ω.
Omega = randn(n,k)

2. Form the m× k sample matrix Y = AΩ.
Y = A * Omega

3. Form an m× k orthonormal matrix Q such that Y = QR.
[Q, R] = qr(Y)

4. Form the k ×N matrix QTA.
B = Q’ * A

5. Compute the SVD of the small matrix B: B = ÛΣV T .
[Uhat, Sigma, V] = svd(B)

6. Form the matrix U = QÛ .
U = Q * Uhat

We make some simple modifications to the above algorithm so that it is easier to

apply to large under-determined matrices. The first three steps can be replaced by

a Gram-Schmidt Orthogonalization procedure, so that forming Ω and Y becomes

unnecessary, as is carrying out the QR factorization. Instead, we are able to build

up Q directly. Finally, we would like to perform the singular value decomposition on

the matrix BBT which will be of a small size k × k. Computing the eigenvectors V

is then possible through the following relations:

B = UΣV T =
k∑
i=1

σiuiv
T
i and Bvi = σiui.

157

The vectors vi can be computed from ui using the relation:

vi =
1√
βi
BTui

where the βi are eigenvalues of BBT and ui the corresponding eigenvectors. The

faster version of the above algorithm thus involves computations with the small k×k

matrix BBT . The above relations are based on the standard lemmas presented below,

of which we include proofs for the sake of completeness.

Lemma 5.6.1. Let A ∈ Rm×p and B ∈ Rm×n. Then range(A) ⊆ range(B) if and

only if A = BR for some R ∈ Rn×p.

Proof. If range(A) ⊆ range(B), then for each i = 1, . . . , p, the i-th column of A given

by ai = Aei lies in the range of B. Hence ai = Bri for some ri ∈ Rn. We can write:

A =

([
a1 a2 · · · ap

])
=

([
Br1 Br2 · · · Brp

])
= B

([
r1 r2 · · · rp

])
= BR.

For the converse, suppose that A = BR for some R ∈ Rn×p. If y ∈ range(A),

then there exists x ∈ Rp such that y = Ax = B(Rx), so y ∈ range(B). Hence

range(A) ⊆ range(B).

Lemma 5.6.2. Let B ∈ Rm×n. Then range(BBT) = range(B).

Proof. Suppose y ∈ range(BBT). That means there exists x such that y = BBTx =

B(BTx), so that y ∈ range(B) also. Hence, range(BBT) ⊆ range(B). It remains to

show that range(B) ⊆ range(BBT). Suppose that x ∈ ker(BBT). This means that

BBTx = 0. Next:

||BTx||22 = (BTx)T (BTx) = xTBBTx = xT (BBTx) = xT0 = 0

158

So we have that: ||BTx||2 = 0 which implies that BTx = 0, which means that

x ∈ ker(BT). Hence we have:

ker(BBT) ⊆ ker(BT) =⇒ (ker(BT))⊥ ⊆ (ker(BBT))⊥

which implies:

range(B) = (ker(BT))⊥ ⊆ (ker(BBT))⊥ = range(BBT).

Proposition 5.6.3. Let B ∈ Rk×n and assume that B has full rank.

Let UDUT ∈ Rm×m be the spectral decomposition of BBT , that is, UTU = Ik and

D = Diag(β1, β2, . . . , βk) is diagonal, with eigenvalues of BBT given by β1 ≥ β2 ≥

· · · ≥ βk > 0. Then defining

Σ = Diag(
√
β1,
√
β2, . . . ,

√
βk),

vi =
1√
βi
BTui ∈ Rn for i = 1, . . . , k, where U =

([
u1 u2 · · · uk

])
,

V =

([
v1 v2 · · · vk

])
∈ Rn×k,

we have that:

1. V is orthogonal, that is, V TV = Ik, and

2. B = UΣV T .

159

Proof. For any 1 ≤ i ≤ k, UTui = ei ∈ Rk since UTU = Ik. Hence for any 1 ≤ i, j ≤

k,

(V TV)ij = vTi vj =
1√
βiβj

uTi BB
Tuj =

1√
βiβj

uTi UDU
Tuj =

1√
βiβj

eTi Dej

=

1 if i = j

0 otherwise.

Hence V TV = Ik.

Next, we have that range(BBT) ⊆ range(U). This follows since by assumption

BBT = UDUT . This means that y ∈ range(BBT) =⇒ y = BBTx = U(DUT)x =⇒

y ∈ range(U). By lemma 5.6.2 and lemma 5.6.1 we have that:

range(B) = range(BBT) ⊆ range(U) =⇒ range(B) ⊆ range(U) =⇒ B = UR

for some matrix R ∈ Rk×n. Next, since 1√
βi
Uei = 1√

βi
ui this implies that:

UΣ−1 = U

([
1√
β1
e1

1√
β2
e2 · · · 1√

βk
ek

])
=

([
1√
β1
u1

1√
β2
u2 · · · 1√

βk
uk

])
=⇒ BTUΣ−1 =

([
1√
β1
BTu1

1√
β2
BTu2 · · · 1√

βk
BTuk

])
= V

=⇒ RT = (RTUT)U = BTU = V Σ

=⇒ R = (V Σ)T = ΣV T

=⇒ B = UR = UΣV T .

The modified algorithm then becomes:

160

Algorithm 8: FAST RSVD: Computing a rank-k SVD approximation UΣV T of
matrix A

Input : m×N matrix A,
k : the desired rank for approximating A.

Output: m× k matrix U satisfying UTU = Ik,
N × k matrix V satisfying V TV = Ik,
k × k diagonal matrix Σ with nonnegative diagonal entries.

Form the matrix Q by computing columns qr for r ∈ (1, . . . , k):
for r = 1, 2, . . . , k do

pr = rand(n, 1);
yr = Apr;

end
q1 =

y1

||y1||
;

for r = 2, . . . , k do

qr =

yr −
r−1∑
j=1

〈yr, qj〉qj
∥∥∥∥∥∥∥∥yr −

r−1∑
j=1

〈yr, qj〉qj

∥∥∥∥∥∥∥∥
2

;

Q(:, r) = qr;
end

Form the k × k matrix BBT and take its SVD:
B = QTA;
Compute eigenvectors Ū and matrix of eigenvalues D of BBT :
[Ū ,D] = eigs(BBT);
Compute eigenvalues matrix Σ:
for r = 1, 2, . . . , k do

Σr,r =
√
Dr,r;

end
Compute the n× k matrix V :
for r = 1, 2, . . . , k do

vr =
1

Σr,r

ATQūr;

V (:, r) = vr;
end
Compute the m× k matrix U :
U = QŪ ;

161

Below, we present some plots that show the quality of a rank-k SVD approximation

for differently conditioned matrices of size 100 × 500. That is, for three differently

conditioned matrices A1, A2, and A3, we plot the percent errors 100
||A−UkΣkV

T
k ||2

||A||2 as

a function of k. What we observe is what we expect: that for matrices for which

the singular values fall of rapidly a small k is sufficient to get a good approximation.

On the other hand, for well conditioned matrices, where the singular values fall off

slowly, a large k is necessary.

0 50 100
0

20

40

60

80

100

120

SVDS

0 50 100
0

20

40

60

80

100

120

SVDS

0 50 100
0

20

40

60

80

100

120

SVDS

20 40 60 80
0

20

40

60

80

100

120

PERCENT ERRORS vs K

20 40 60 80
0

20

40

60

80

100

120

PERCENT ERRORS vs K

20 40 60 80
0

20

40

60

80

100

120

PERCENT ERRORS vs K

Figure 5.2: Singular value distributions and percent errors as a function of k. We
may observe that for matrices with fast decaying singular value distributions, only a
small k is necessary to obtain a good low rank approximation.

162

5.7 Numerical Comparisons

In this section we perform numerical tests with some of the algorithms which we

have considered. We pick the fastest of the existing schemes: FISTA and DALM

and compare their performance against FIVTA and the two IRLS schemes on simple

examples with well and not well conditioned matrices. In each case, we start with a

sparse signal x, and for each run, we make a matrix A with a certain singular value

distribution, explicitly controlled by using the reverse SVD procedure to construct

A = UΣV T , where the orthogonal matrices U and V are generated via a QR decom-

position of a random matrix. We take an input x and then run several runs with

the different algorithms. For each run within an example, Σ is kept fixed, but the U

and V are different so the different systems are slightly different. Then we compute

the median and first and third quartiles of different quantities from different runs.

We do this for two types of conditioning of A: one where the singular values fall off

linearly and another in which they fall off in a strongly non-linear fashion. In each

case, some noise is added to the right hand side b. The solution we plot is at the so

called noise level: we look for a solution such that its ||Ax− b||2 value is close to the

norm of the noise. For this we utilize the approach for choosing the regularization

parameter described earlier in this chapter. We now show two different singular value

distributions and a sparse input on which we run reconstructions with the different

algorithms.

163

0 200 400 600 800 1000
0

20

40

60

80

100

Typical svds of A

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

Typical svds of A

0 500 1000 1500
−50

0

50

Typical input x

Figure 5.3: Two distributions of singular values (well conditioned and worser condi-
tioned) and a staircase arranged sparse input.

In the two sets of figures below, we plot several quantities for the above examples

(a well conditioned and a worder conditioned staircase input). We plot the residuals

||Ax − b||2 versus the regularization parameter τ , percent errors between the recon-

struction and the original versus τ and the solution at the τ for which ||Ax − b||2 is

close to the norm of the noise. We plot the quantities one row at a time, each corre-

sponding to a different algorithm: FISTA, DALM, FIVTA, IRLS, and IRLS SYS from

the top down. The IRLS methods are used with qk = 1 for all k. We observe below

that the behavior of these quantities are quite similar for the different algorithms.

164

1 0.00025
0

50

100

150

200

tau/max(A
t
 b)

||
A

x
 −

 b
||

2

final residuals vs tau

median
q1
q3
noise

1 0.00025
0

20

40

60

80

100

tau/max(A
t
 b)

p
e
rc

e
n
t
e
rr

o
r

percent errors vs tau

median

q1
q3

0 500 1000 1500
−60

−40

−20

0

20

40

60

original input and noise match solution

input

output

1 0.00025
0

50

100

150

200

tau/max(A
t
 b)

||
A

x
 −

 b
||

2

final residuals vs tau

median
q1
q3
noise

1 0.00025
0

20

40

60

80

100

tau/max(A
t
 b)

p
e
rc

e
n
t
e
rr

o
r

percent errors vs tau

median

q1
q3

0 500 1000 1500
−60

−40

−20

0

20

40

60

original input and noise match solution

input

output

1 0.00025
0

50

100

150

200

tau/max(A
t
 b)

||
A

x
 −

 b
||

2

final residuals vs tau

median
q1
q3
noise

1 0.00025
0

20

40

60

80

100

tau/max(A
t
 b)

p
e
rc

e
n
t
e
rr

o
r

percent errors vs tau

median

q1
q3

0 500 1000 1500
−60

−40

−20

0

20

40

60

original input and noise match solution

input

output

1 0.00025
0

50

100

150

200

tau/max(A
t
 b)

||
A

x
 −

 b
||

2

final residuals vs tau

median
q1
q3
noise

1 0.00025
0

20

40

60

80

100

tau/max(A
t
 b)

p
e
rc

e
n
t
e
rr

o
r

percent errors vs tau

median

q1
q3

0 500 1000 1500
−60

−40

−20

0

20

40

60

original input and noise match solution

input

output

1 0.00025
0

50

100

150

200

tau/max(A
t
 b)

||
A

x
 −

 b
||

2

final residuals vs tau

median
q1
q3
noise

1 0.00025
0

20

40

60

80

100

tau/max(A
t
 b)

p
e
rc

e
n
t
e
rr

o
r

percent errors vs tau

median

q1
q3

0 500 1000 1500
−60

−40

−20

0

20

40

60

original input and noise match solution

input

output

Figure 5.4: Well conditioned staircase. FISTA, DALM, FIVTA, IRLS, IRLS SYS.

165

1 0.00025
0

50

100

150

200

tau/max(A
t
 b)

||
A

x
 −

 b
||

2

final residuals vs tau

median
q1
q3
noise

1 0.00025
0

20

40

60

80

100

tau/max(A
t
 b)

p
e
rc

e
n
t
e
rr

o
r

percent errors vs tau

median

q1
q3

0 500 1000 1500
−60

−40

−20

0

20

40

60

original input and noise match solution

input

output

1 0.00025
0

50

100

150

200

tau/max(A
t
 b)

||
A

x
 −

 b
||

2

final residuals vs tau

median
q1
q3
noise

1 0.00025
0

20

40

60

80

100

tau/max(A
t
 b)

p
e
rc

e
n
t
e
rr

o
r

percent errors vs tau

median

q1
q3

0 500 1000 1500
−60

−40

−20

0

20

40

60

original input and noise match solution

input

output

1 0.00025
0

50

100

150

200

tau/max(A
t
 b)

||
A

x
 −

 b
||

2

final residuals vs tau

median
q1
q3
noise

1 0.00025
0

20

40

60

80

100

tau/max(A
t
 b)

p
e
rc

e
n
t
e
rr

o
r

percent errors vs tau

median

q1
q3

0 500 1000 1500
−60

−40

−20

0

20

40

60

original input and noise match solution

input

output

1 0.00025
0

50

100

150

200

tau/max(A
t
 b)

||
A

x
 −

 b
||

2

final residuals vs tau

median
q1
q3
noise

1 0.00025
0

20

40

60

80

100

tau/max(A
t
 b)

p
e
rc

e
n
t
e
rr

o
r

percent errors vs tau

median

q1
q3

0 500 1000 1500
−60

−40

−20

0

20

40

60

original input and noise match solution

input

output

1 0.00025
0

50

100

150

200

tau/max(A
t
 b)

||
A

x
 −

 b
||

2

final residuals vs tau

median
q1
q3
noise

1 0.00025
0

20

40

60

80

100

tau/max(A
t
 b)

p
e
rc

e
n
t
e
rr

o
r

percent errors vs tau

median

q1
q3

0 500 1000 1500
−60

−40

−20

0

20

40

60

original input and noise match solution

input

output

Figure 5.5: Ill conditioned staircase. FISTA, DALM, FIVTA, IRLS, IRLS SYS.

166

In the above plots we see that for the FIVTA scheme, the intersection of the residuals

with the noise curve occurs at a higher τ compared to the other algorithms; otherwise

the numerical performance of the five methods is quite similar. Next, we make a com-

ment on the number of nonzeros produced in the solution of the different algorithms.

1 0.00025
0

200

400

600

800

1000

tau/max(A
t
 b)

n
u
m

b
e
r

o
f
n
o
n
z
e
ro

s

number of nonzeros vs tau

median
q1
q3
input

1 0.00025
0

200

400

600

800

1000

tau/max(A
t
 b)

n
u
m

b
e
r

o
f
n
o
n
z
e
ro

s

number of nonzeros vs tau

median
q1
q3
input

1 0.00025
0

200

400

600

800

1000

tau/max(A
t
 b)

n
u
m

b
e
r

o
f
n
o
n
z
e
ro

s

number of nonzeros vs tau

median
q1
q3
input

1 0.00025
0

200

400

600

800

1000

tau/max(A
t
 b)

n
u
m

b
e
r

o
f
n
o
n
z
e
ro

s

number of nonzeros vs tau

median
q1
q3
input

1 0.00025
0

200

400

600

800

1000

tau/max(A
t
 b)

n
u
m

b
e
r

o
f
n
o
n
z
e
ro

s

number of nonzeros vs tau

median
q1
q3
input

Figure 5.6: Number of nonzeros in solution versus parameter τ for FISTA, FIVTA,
DALM, IRLS, and IRLS SYS

From the above figure we see that the number of nonzeros in the solution differs

for the thresholding based schemes from the other algorithms. Only in the the two

thresholding schemes, FISTA and FIVTA, do we explicitly set coefficients to zero at

each iteration. For the other algorithms, this behavior is not present by default. We

may however, explicitly control the number of nonzeros at each iteration, by keeping

only a portion of the largest nonzero elements. This is done for the above tests so the

the nonzero curves for DALM, IRLS, and IRLS SYS above remain constant. Note

that this is simply a choice we made, we could have not zeroed out any elements at the

end of each iteration, or zeroed out those whose absolute magnitude is smaller than

τ , but then we would have small noise like elements pop up in the solution. Another

alternative is to apply a filter at the very end to remove these small components.

167

We now present the results of some other numerical experiments. First, we present

some results of sparse image reconstruction algorithms. We take a sparse image as

a vector x (by stacking up the matrix rows), multiply it against a sensing matrix

A, add some noise, and then try to reconstruct x from A and b = Ax + noise using

several different algorithms. We are interested in the quality of the reconstruction

as the number of rows of the sensing matrix is varied (as the number of rows, or

measurements is increased, the quality of reconstruction improves). This corresponds

in some sense to the number of measurements of the noisy image collected with the

sensing matrix. The sensing matrix is designed such that the RIP conditions for it

are satisfied so this becomes an application of compressive sensing. We use a random

Gaussian sensing matrix.

Figure 5.7: Two sparse images (A and B) used for reconstructions.

In the next page, we present the image reconstructions with the different algorithms.

We again observe that for a fixed number of observations, the reconstructed images,

as obtained with the different algorithms, look very much alike.

168

Figure 5.8: Reconstructions with FISTA (column 1), DALM (column 2), FIVTA
(column 3), and IRLS (column 4) with sensing matrices with increasing numbers of
nonzeros for two inputs (image A: rows 1-3; image B: rows 4-6).

169

Next, we run tests where we vary the noise level in the right hand side b and the matrix

A and the number of nonzeros in the sparse input as we run the reconstructions with

the different methods, to see how well the different algorithms are resistant to small

perturbations in these quantities. We expect worser reconstructions as the errors or

the number of nonzeros to reconstruct is increased. This is indeed what we observe

but the performance is similar across different methods below:

0

20

40

60

80

PERCENT ERRORS

num nnz

%
 e

rr
o

r

1

2

3

4

5

0

10

20

30

40

50

60

PERCENT ERRORS

noise in b

%
 e

rr
o

r

1

2

3

4

5

0

20

40

60

80

PERCENT ERRORS

noise in A

%
 e

rr
o

r

1

2

3

4

5

Figure 5.9: Percent errors in reconstruction versus increasing number of nonzeros
in input, increasing noise in right hand side b and increasing noise in matrix A for
different algorithms (FISTA, DALM, FIVTA, IRLS, and IRLS SYS); medians plotted
over 10 runs.

170

We now observe that from all the examples given above, the algorithms seem to

perform similarly. Indeed, since they optimize similar problems (the functions that

DALM and FIVTA minimize are slightly different, but are still of a similar form),

we do not expect the converged results to be very different. We now investigate the

speed of convergence. First, we compare how FISTA, IRLS, and IRLS SYS decrease

the value of the `1 functional ||Ax− b||22 + 2τ ||x||1 for different systems. We see below

that for the examples we consider, IRLS SYS decreases the functional more rapidly

than the other algorithms.

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

SVDs

0 500 1000 1500
−50

−40

−30

−20

−10

0

10

20

30

40

50

X

0 10 20 30 40 50 60 70 80
7.5

8

8.5

9

9.5

10

10.5

11

FVALs VS ITERATION

1

2

3

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

SVDs

0 500 1000 1500
−50

−40

−30

−20

−10

0

10

20

30

40

50

X

0 10 20 30 40 50 60 70 80
7.5

8

8.5

9

9.5

10

10.5

11

FVALs VS ITERATION

1

2

3

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

SVDs

0 500 1000 1500
−50

−40

−30

−20

−10

0

10

20

30

40

50

X

0 10 20 30 40 50 60 70 80
5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

FVALs VS ITERATION

1

2

3

Figure 5.10: Decrease of `1 functional versus iteration at noise-matching τ versus
iteration for FISTA (1-red), IRLS (2-green), and IRLS SYS (3-blue). Left column:
singular value distribution, center: sparse input, right: functional values versus iter-
ation.

171

5.8 Chapter Remarks and Conclusions

In this chapter we discussed a number of ideas and techniques useful in numerical

implementation, especially in the case of large scale problems. We described an inverse

replacement strategy for the second IRLS scheme. For the coordinate descent method,

we presented a discussion on its implementation for larger problems: in particular we

presented a useful way of obtaining estimated matrix column norms for a matrix and

discussed its integration with an ISD scheme. We also commented on the application

of the iteratively reweighted norms idea from Chapter 4 to other algorithms: we

presented a reweighted norm approach for the dual space method from Chapter 2.

Finally, we presented a fast version of a randomized SVD algorithm that can be used

to obtain much smaller three matrix approximations to large ill-conditioned matrices.

This is especially useful when the matrix we use consists of a transform (such as the

product matrix AW−1). Each application of such a matrix involves the application

of the transform matrix W−1. However, via the approximation AW−1 ≈ UΣkV
T ,

the transform can be removed. We concluded the chapter by presenting the results

of some simple numerical tests which show similar final reconstructions amongst the

different algorithms and similar stability to noise in A and b. In terms of runtime, we

observed that the second IRLS scheme is able to decrease the functional faster than

the other methods.

172

Chapter 6

APPLICATION FROM

GEOTOMOGRAPHY

6.1 Overview

The past few chapters introduced multiple algorithms for the regularization of so-

lutions to large linear systems using sparsity constraints (although with the IRLS

methods developed in Chapter 4, the desired degree of sparsity can be easily varied).

We mentioned in passing that the motivation for these methods was an application

in Geotomography and that the benefit of the simple (in terms of operations) algo-

rithms was to allow them to be applied to very large problems. In this chapter, we

present the application in more detail: we describe the mathematical formulation of

the forward and inverse problems and show how we can apply the techniques that we

have developed in the previous chapters. We also discuss the advantage of the mixed

norm minimization accomplished with the IRLS schemes, by using a dictionary of

different bases to represent the solution. Additional details regarding the application

may be found in our group paper [41].

173

6.2 Travel-Time Tomography and Model Parame-

ters

The problem we consider comes from global seismic tomography and we are inter-

ested in determining the three-dimensional elastic wave speed structure of the Earth,

usually in the form of deviations from a spherically symmetric reference model (which

is ”radial” in the sense that it only varies with depth in the Earth.) To first order,

the Earth’s structure is that of a layered set of shells, dependent only on the radial

distance downward from the surface. What concerns us in this application are the

three-dimensional perturbations to this ”background” or ”reference” state. We now

present a brief explanation of the above. A seismic event, such as an earthquake,

occurring at some three-dimensional location within the Earth volume, sends out

seismic waves which travel outward to the surface where they can be measured by

recorders stationed at various parts of the world. Earthquakes only occur within a

certain depth interval (typically confined to the first 700 km from the surface, whereas

the Earth’s radius is about 6731 km) and in narrow zones (primarily on plate bound-

aries), but the seismic waves they generate directly sample most of the Earth’s volume

[33]. Different regions of the Earth’s mantle (the solid volume, below several tens of

kilometers of crust and down to its liquid core, about halfway down the radius) are

distinct compositionally and also thermally. The seismic wave velocities vary accord-

ingly, and thus, by mapping seismic wave speeds, geophysicists attempt to construct

the detailed structure of the Earth’s interior temperature and composition.

There are two types of seismic waves: P (primary) and S (secondary) waves. Primary

waves travel faster through the Earth and are the first waves to be picked up by seis-

mometers when an earthquake event is measured. They are compressional waves that

are longitudinal in nature. They move particles (such as rock) in the travel direction

of the wave. On the other hand, the slower S-waves move the rock perpendicularly

174

to the wave travel direction. As the waves move through boundaries between mate-

rials of different wave speeds, they experience refractions. In the simplest sense, we

can make use of relations from geometric optics such as Snell’s law to determine the

rough paths of these waves, if we know the velocities of the materials through which

they travel. Thus, given a first model of wave velocities, we can determine (at least

approximately) how the waves move and then consider perturbations to the velocity

model to image more detailed three-dimensional structure. As such, we can infer the

nature of the Earth’s interior from measurements on the Earth’s surface by receivers

(seismometers) of the waves’ arrival times.1

The knowledge of seismic wave velocities at different locations inside the Earth can

thus be used to deduce its interior structure. This is the reason why geophysicists are

interested in accurate models of seismic wave velocities. In first approximation, the

Earth is spherically symmetric, and there is a small handful of radial reference models

with respect to which all current three-dimensional models are being formulated. In

the reference models, the velocity changes only across depths, but not across lati-

tudes and longitudes at a fixed depth. The Earth is, however, not truly spherically

symmetric; for instance, it is known that there are hot plumes at various locations,

which affect the wave velocities at these points. The goal of the application men-

tioned here (the solution to the inverse problem) consists of finding deviations to the

spherically symmetric model of wave velocities at different latitudes and longitudes.

These deviations are computed from a big under-determined linear system, obtained

by a first order approximation of the difference between the computed and observed

travel times, where the computed travel times come from the spherically symmetric

model. The matrix encodes the wave propagation for various earthquake-receiver

1For example, S-waves are unable to travel through liquid. Thus they are unable to travel through
the Earth’s outer core. Hence, from some seismic events at some locations we do not observe any
S-waves at all and this allows us to conclude that some portion of the Earth (the outer core) is
indeed liquid, while the inner core is solid.

175

pairs: seismic waves from earthquakes are picked up at different receivers throughout

the world. However, with the current data set [39], we are mostly constrained to re-

ceivers located in the western part of the USA. This means that the resolving power of

the matrix is also limited to this location, and we are not able to solve for deviations

from spherical symmetry on a global scale. However, we formulate the mathematical

set up to be able to deal with global data and models, which will become available

to us in the future.

seismometers

earthquakes

your planet

Figure 6.1: Ray paths of the compressional (P) waves emanating from various earth-
quakes in the ak135 reference model. Figure courtesy of Frederik J. Simons. Distri-
bution of Seismic Stations corresponding to our data set. Figure courtesy of Guust
Nolet.

We now describe the forward and inverse problems from the application that we have

described.

Forward Problem: The forward problem consists of predicting the arrival times of

compressional (P-) waves at some location on the Earth’s surface, given a velocity field

v(r) = v(r, θ, φ), where r = ||r||2 is the radius (or measure of depth) and θ and φ the

colatitude and longitude, respectively. For spherically symmetric Earth models, the

reference velocity v0(r) varies with radius only, and to first order, v(r) = v0(r)+δv(r).

The arrival time of the wave, as predicted with this velocity model v(r) is given by:

t(∆) =

∫ s(∆)

s(0)

v−1 (r(s)) ds,

176

where ∆ is the epicentral distance, the arc length between the earthquake epicenter

and the station location. The integration above, is along the ray path from epicenter

to the station receiver. That is, given an assumed velocity field (an existing model of

wave velocities inside the Earth, say a spherically symmetric one) and the location

and time of the event (an earthquake), the forward problem consists of predicting the

arrival times of the compressional waves at a given location on the Earth’s surface.

Inverse Problem: The inverse problem consists of finding the deviations δv(r) to a

model velocity field v0(r) from many different observations recorded on seismograms

from different earthquakes. The observations are the travel-time anomalies, δt(∆), i.e.

the difference between the arrival times of the seismic waves in the actual Earth, and

those predicted via the forward model in the reference Earth, at different epicentral

distances ∆. Sticking with the geometric optics approximation (aka Ray theory, at

infinite frequency), and to first order, the travel-time anomaly is given by an integral

over the ray in the background/reference model v0(r):

δt =

∫ s(∆)

s(0)

δv−1 (r(s)) ds = −
∫ s(∆)

s(0)

δv(r)

v2
0(r)

ds.

This equation can be discretized to yield a linear inverse problem, in which the ob-

jective is to determine the distribution δv−1 (r) from the observations δt. Discretizing

in voxels gives the problem in the familiar linear system form Ax = b, where b is the

vector of delay times δt and x is the vector of the unknown slowness perturbations

δv−1(r) and A is the sensitivity matrix that is filled with the path lengths of the

rays in the discretized voxels. That is, the rows of the matrix correspond to different

earthquake-receiver pairs and the columns to the discrete voxel elements j (a loca-

tion inside the Earth). For each earthquake-receiver pair, the seismic waves trace out

a ray that travels from the epicenter of the earthquake through different voxels to

the location of the receiver. In this setup, Ai,j is the length of the segment dsj, the

177

portion of the ray inside discrete element j for ray i:

[δti] = [− Ai,j −][δ−1v],

where Ai,j = [ds(j)]i and δti =
∫
rayi

δ−1v (r(si)) dsi so the system of equations reads

as:

δti =
∑
j

[ds(j)]iδ
−1v(j) =⇒ bi =

∑
j

Ai,jxj.

Taking into account the finite-frequency effects of the wave field (as opposed to ray

theory) leads to more complex relations between the observations δt and the model.

Instead of

δt =

∫
ray

[−v−1
0 (r)]

[
δv(r)

v0(r)

]
ds

when more physics of the wave problem is taken into account, the relation becomes:

δt =

∫ ∫ ∫
earth

K(r)

[
δv(r)

v0(r)

]
dr (6.2.1)

Here, the K(r) is a sensitivity kernel that, depending on the approximations used

[33], describes more or less completely the interactions between scattered portions of

the wavefield in a medium that is only slightly perturbed away from the reference, as

before. Various ways exist to compute the kernels K(r) for the various wave types

considered. One of the most widely known travel-time kernels is of the “banana-

donut” type [10], named after its characteristic topology. We recognize here that no

matter how the observations δt to the Earth model δv(r)
v0(r)

are modeled, both types lead

to linear inverse problems after discretization. Letting the unknowns be m(r) = δv(r)
v0(r)

,

we can write the discrete form of the above as:

(δt)i =
N∑
j=1

mj

∫
[K(r)]i,jdr =⇒ bi =

N∑
j=1

Ki,jmj =⇒ b = Ax (6.2.2)

178

where Ki,j =
∫

[K(r)]i,jdr the integration of kernel i (corresponding to the i-th

earthquake-receiver pair) over grid segment j. The linear system Ax = b has Ai,j =

Ki,j, x = [mj] and b = [(δt)i].

Rather then solving the system in its original form, we assume that the unknowns

m(r) = δv(r)
v0(r)

are sparse in the wavelet domain. That is, with a suitable set of wavelet

functions Wj(r), they may be expanded as:

m(r) =
J∑
j=0

wjWj(r)

with few wj 6= 0. Plugging into (6.2.1), this becomes:

δt =
J∑
j=0

wj

∫ ∫ ∫
earth

K(r)Wj(r)dr (6.2.3)

Discretizing, we again come up with a linear system:

(δt)i =
N∑
j=0

wj

∫
[K(r)]i,jWj(r)dr =

N∑
j=0

wjK̄i,j

where the kernels are now integrated with the wavelet functions: K̄i,j =
∫

[K(r)]i,jWj(r)dr.

The above then becomes a linear system with the matrix composed of elements K̄i,j.

The disadvantage of this formulation is that because the matrix elements are the in-

tegrals of the kernels with the wavelet functions, for any new set of wavelet functions

(Wj), we must rebuild the matrix. Thus, we instead go back to (6.2.2) and use instead

of the vector x = (mj) its wavelet representation x = W−1w:

bi =
N∑
j=1

Ki,j

(
N∑
k=1

W−1
j,k wj

)
=

N∑
j=1

N∑
k=1

Ki,jW
−1
j,k wj

179

where W−1 represents the inverse transform matrix. Now due to the presence of noise

in the b vector and the assumption of sparsity on the coefficients wj we can formulate

(in the simplest case) the following minimization problem:

min
wj
||bi −

N∑
j=1

N∑
k=1

Ki,jW
−1
j,k wj||

2
2 + 2τ

N∑
k=1

|wj| =⇒ min
w
||AW−1w − b||22 + 2τ ||w||1

with the matrix A being composed of elements Ki,j.

The data set we use consists of the delay times in [40], which have a distributed set of

earthquakes on a global scale but fix the station set in North America, as evident from

Figure 6.2. In this data set, A is up to 500,000 by 3,000,000 and not well conditioned;

b is noisy.

180

6.3 Cubed Sphere Grid and Wavelets

We now discuss what can be referred to as tools for the experiment: we discuss the

coordinate grid, wavelets, and the characteristics of the matrix. We first comment

on the coordinate system that we use. The choice is somewhat influenced by the use

of the wavelet transform. The coordinate system must cover various points inside

the Earth, over which our sensitivity kernels are defined. While it is easy to adopt a

spherical coordinate system, this demands some special treatment, especially at the

poles where there are singularities. Spherical wavelets are also more challenging to

construct and program than those on a flat two dimensional grid. In particular the

singularities call for special numerical measures. For this reason, we use a so called

cubed-sphere grid [37], a projection of the sphere onto a cube. More explicitly stated,

we project the surface content of a sphere of a certain radius onto the six faces of a

cube. There are a number of different depth layers (37 in our system) and each depth

layer corresponds to a sphere of that radius and its surface contents are mapped onto

the six chunks (faces) of the corresponding cube. Thus, a column vector expressed

in the cubed sphere coordinate system is inherently 4 dimensional: there is a depth

layer coordinate (1 − 37), the chunk number (1 − 6) and the x and y indices within

the chunk, each of which go from 1−128. Thus, the total number of grid points (and

variables) in our system is 37× 6× 128× 128 which is over three million. The cubed

sphere projection for a sample model is illustrated below:

Min=−3

Max=4.9154

−5 −2.5 0.0 2.5 5

Azimut: 90
o

n=(35
o
N,−120

o
E)

 ∆
x
=20km

 ∆
y
=20km

testslice

Min=0
Max=4.4088

−5 0 5

Min=−3

Max=4.9154

−5 −2.5 0.0 2.5 5

Figure 6.2: Model on the cube, depth slice, projection onto spherical surface

181

The advantage of this formulation is that the wavelet transform, when applied to a

vector that is encoded in this coordinate system, can be done largely by applying the

transform over the individual chunks, each of which has an underlying 2D coordinate

system. At the beginning and end of the routine, extra work must be done to handle

chunk boundaries, but the main portion of the work is easily parallelizable as it

involves independent operations over the six chunks.

There is a number of different wavelet transforms we can use; we will see shortly

that it is not necessary to make a precise choice a priori; the algorithms we have

developed (in particular, the IRLS schemes), can easily be used for many different

transforms. The transforms vary mostly with respect to smoothness of the underlying

wavelet basis. For example, the classical Haar transform has sharp drop-offs and

can represent sharper cut-offs and features, while a smoother transform like CDF4-

2 is better at representing smoother features. Each transform consists of scaling

and wavelet functions; the number of wavelet functions depends on the transform.

Consider a single level of the CDF4-2 transform and the corresponding wavelet and

scaling functions below:

Figure 6.3: Scaling and Wavelet Functions of a CDF4-2 transform

Previously we discussed minimization problems such as:

||Ax− b||22 + 2τ ||x||1

Below we will refer to vectors x and w. In this notation, the vector x will be in the

voxel domain (corresponding to the cubed sphere grid we introduced above). The

182

vector w is the representation of x in the wavelet domain. They are related through

the following relations involving the forward transform W and the inverse transform

W−1:

w = Wx and x = W−1w

When we look for a sparse solution in the wavelet domain, we mean that we expect

the vector w to be sparse; the vector x may in fact be not very sparse. However, for

the solutions we obtain we would still like for ||Ax− b||2 to be small. Instead of the

above `1 functional we therefore instead use the functional:

||Ax− b||22 + 2τ ||w||1 = ||AW−1w − b||22 + 2τ ||w||1

so that the sparsity promoting penalty is on w not on x. With this formulation, all

the previous algorithms can now be used with the matrix AW−1 instead of A. This

is possible to do even if AW−1 is not available explicitly, since this matrix and its

transpose only need to be applied to vectors. Notice that: (AW−1)T = W−1,TAT ,

implying that the so-called “inverse transpose transform” is required for computation.

This transform can be obtained by applying the forward transform with the wavelet

filters used from the inverse transform.

A vector in the wavelet domain consists of scaling coefficients and wavelet coefficients

of different levels (depending on the number of levels of the applied transform). For

a transform with P levels:

w = (s, w1, . . . , wP)

The different portions of the wavelet vector w can reconstruct different parts of

the original model. That is, given x = W−1w, we claim that W−1(s, 0, . . . , 0),

W−1(0, w1, . . . , 0), W−1(0, 0, w2, . . . , 0), and so on, all reconstruct x within some tol-

erance. Of course, the number of coefficients at each scale is different, so this means

183

some coefficients are more crucial to the reconstruction than others. In Figure 6.3

we illustrate this using an example model decomposed with two levels of wavelets

(using the CDF4-2 transform): From Figure 6.3 we see that the scaling coefficients

Min=−1.0117

Max=2.0132

−1 −0.5 0.0 0.5 1 0 1 2
0

0.5

1

1.5

2

2.5

3
x 10

6 numbers of different coefficients in WT

Min=−0.35581

Max=1.4201

−1 −0.5 0.0 0.5 1

Min=−1.7201

Max=1.2038

−1 −0.5 0.0 0.5 1

Min=−1.2956

Max=0.91438

−1 −0.5 0.0 0.5 1

Figure 6.4: Top row: original model, numbers of different coefficients: scaling and
two wavelet scales. Middle row: reconstruction using only the scaling coefficients:
W−1(s, 0, 0). Bottom row: reconstructions using only the fine and coarse wavelet
coefficients: W−1(0, w1, 0), and W−1(0, 0, w2).

almost entirely represent the Gaussian ball, and the wavelet coefficients are needed

to represent the “holes” and the small cubes in the plots. Still the biggest amount of

information is contained in the small number of scaling coefficients. It is thus clear

from this example that in certain situations different coefficients demand different

treatment. For instance, if we expect to recover a model of this type it may make

184

sense to impose an `2-penalty on the scaling coefficients so that none of them are

forced to zero, while on the wavelet coefficients we can safely impose an `1-penalty

since only few of the large number of wavelet coefficients are nonzero, meaning that

we are interested in a sparse solution. The IRLS schemes, which are designed to

minimize the general functional:

||AW−1w − b||22 + 2
N∑
k=1

λk|wk|qk for 1 ≤ qk < 2

can be used to do this. Suppose that w corresponds to wavelet coefficients. For the

above examples we have P +1 index sets corresponding to scaling coefficients and the

P wavelet scales. For the k in the scaling wavelet scale we can set qk close to two and

perhaps a lower λk. For the other k we can set qk = 1 and perhaps a slightly higher

λk.

6.4 Matrix Properties and Sample Reconstructions

We now discuss some properties of our matrix and the types of reconstructions that

we can expect to obtain from it. This is a prelude to the next section, where we discuss

how we carry out the actual inversions with real data. As we mentioned before, the

matrix consists of data from the integration of sensitivity kernels at different points

inside the Earth (on a cubed sphere grid). The number of variables in our models and

hence the number of columns of our matrix is this same number: 37×6×128×128 =

3, 637, 248. The rows correspond to the available source-receiver pair data contained

in the right hand side b. In the most complete data set we have about half a million

source-receiver pairs, hence this many rows. The first thing to note about the matrix

is that because of the locations of the receiving stations (most of which are located

over the Western USA as shown above) the reconstructions we obtain are mostly

185

limited to this location. In Figure 6.4 we show a plot of the column sums of the

matrix:

Figure 6.5: Matrix Column Sums.

Since, we cannot recover much from empty data, we do not expect to be able to recover

much beyond the colored regions above. However, as we will see below, we can still

recover reasonable models over the USA with this data set. The region over the USA

is also somewhat limited, as we show in the reconstruction of the synthetic models

below. Before showing the output we discuss here what we mean by a reconstruction.

We generate a model x and use our matrix to obtain Ax. We then add some Gaussian

random noise (5 percent) to the right hand side to obtain b = Ax + noise. We then

reconstruct x by running some algorithm (FISTA, IRLS, DALM, etc) at a τ such that

||Ax− b|| ≈ ||noise||. This τ is chosen by hand, estimated using a few different short

runs. We now show two reconstructions of a USA model obtained by minimizing:

||AW−1w − b||22 + 2τ ||w||1

for two different transform W , a Haar and a CDF transform. We show these recon-

structions below in Figure 6.4.

186

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

RESIDUALS AND NOISE VS ITERATION

0 200 400 600 800 1000 1200 1400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

RESIDUALS AND NOISE VS ITERATION

Figure 6.6: USA checkerboard and reconstructions with FISTA using the Haar and
CDF Transforms followed by plots of the residuals versus noise.

Figure 6.4 illustrates in which regions we can expect to obtain reasonable reconstruc-

tions from our inverse problem. In particular, we do not expect to resolve as much in

the mid USA region, but we do obtain sensible reconstructions in the Western and

187

Eastern portions, with the Western USA being the area of best reconstructions. This

is not suprising, given the plot of the receiver location stations we saw earlier.

In addition, we see that the output is quite different for the models. In the case

illustrated in Figure 6.4, we would almost certainly prefer the Haar reconstruction

because of the sharp drop-offs in the input. In many other cases, however, the Haar

reconstruction is substantially worse than that with CDF wavelets.

In general, we would like to let the algorithm pick from different bases automatically.

This can be done by minimizing:

||A
(
W−1

1 w1 + · · ·+W−1
B wB

)
− b||22 + 2τ1||w1||1 + · · ·+ 2τB||wB||1

for B different bases. For one of the bases we can even choose the identity (meaning

the voxel basis) since certain features may be best represented without wavelets. In

the reconstructions below (Figure 6.4), we use Haar, CDF4-2, and the Identity basis.

For Haar and CDF4-2 we use 2 levels of the wavelet transform (out of the 4 that is

possible with our routines). Of course, this is just a choice we make for simplicity and

one we find that works reasonably well; it would be even better to use more different

basis: Haar with 1 to 4 levels, CDF4-2 with 1 to 4 levels and so on. For simplicity

we pick one universal τ and use that for all the different bases.

188

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

RESIDUALS AND NOISE VS ITERATION

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

RESIDUALS AND NOISE VS ITERATION

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

RESIDUALS AND NOISE VS ITERATION

Figure 6.7: Three input models and their reconstructions (at a fixed depth) with
the FISTA scheme with a 3 wavelet combination basis at 400 iterations. Left: input
model, center: reconstruction, right: plot of residual norm (||Ax − b||22) and noise
vector norm versus iteration. The second model is not computed at the right residual
level but the reconstruction still exhibits good behavior.
.

To judge the quality of the reconstructed models, we also include below the plots

of the histograms of the residuals, plotted back to back with a histogram of the normal

189

distribution with the same mean and variance as the residuals as well as the QQ plots,

which compare the distribution of the residuals against the normal distribution.

8 6 4 2 0 2 4 6 8
−0.0111

−0.00573

−0.000381

0.00497

0.0103

0.0157

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Standard Normal Quantiles

Q
u
a
n
ti
le

s
 o

f
In

p
u
t
S

a
m

p
le

QQ Plot of Sample Data versus Standard Normal

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
−0.00165

−0.000697

0.00026

0.00122

0.00217

0.00313

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

Standard Normal Quantiles

Q
u
a
n
ti
le

s
 o

f
In

p
u
t
S

a
m

p
le

QQ Plot of Sample Data versus Standard Normal

6 4 2 0 2 4 6
−0.0172

−0.00952

−0.00181

0.00591

0.0136

0.0213

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Standard Normal Quantiles

Q
u
a
n
ti
le

s
 o

f
In

p
u
t
S

a
m

p
le

QQ Plot of Sample Data versus Standard Normal

Figure 6.8: Histograms of resdiduals (left histogram) and of corresponding random
normal distribution with same mean and variance (right histogram) and QQ plots
which measure how close the residuals are to the normal distribution

190

We see from the above plots that the residuals are nicely distributed around zero

with no long tails. From the QQ plots we see that they do not follow the normal

distribution, but in fact they are even more centered around zero. In general, the

reconstructions we obtain are close to the original models, which means that we should

be able to obtain suitable reconstructions with real data.

6.5 Inversion

In the previous section, we mentioned some properties of the matrix and presented

some reconstructions of synthetically constructed models with different sets of fea-

tures. Here we discuss the inversion of a data set [39] that is centered over the Western

US, a region where we expect (based on previous discussion in this chapter) to obtain

good reconstructions. We now discuss the general mathematical set up. In the inver-

sion of the data set, more terms come into play. Apart from the matrix A, we also

have correction and damping terms. The correction terms serve to correct certain

data about station location information and earthquake source locations, since earth-

quake locations are only known approximately, which directly affects travel times.

These data are then apended as columns to the end of the matrix. This process

introduces more variables into the system. As a result, it is customary to damp these

extra variables or impose an `2 penalty on them. Without additional regularization

terms, we would like to solve the least squares problem:

min
w1,...,wB ,v

∥∥∥∥∥∥∥∥∥∥∥∥∥

AW−1
1 · · · AW−1

B C

0 · · · 0 D

w1

...

wB

v

−

b
0

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

191

where W1, . . . ,WB are a collection of wavelet bases, C are the correction terms and

D = εI are damping terms for the corrections. Assuming we would like to impose an

`1 penalty on all components, we obtain the following minimization problem:

min
w1,...,wN ,v

∥∥∥∥∥∥∥∥∥∥∥∥∥

AW−1
1 , . . . , AW−1

B C

0 . . . 0 D

w1

. . .

wB

v

−

b
0

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

+ τ1||w1||1 + · · ·+ τB||wB||1

Expanding this yields:

min
w̄,v
||AW−1

1 w1+· · ·+AW−1
B wB+Cv−b||22+||Dv||22+τ1||w1||1+· · ·+τB||wB||1 (6.5.1)

where we have used w̄ = (w1, . . . , wB). The regularization parameters τ1, . . . , τB can

be chosen based on the weight we would like to assign to each basis. For example, if we

would like to penalize the Haar transform more, we would make the τ corresponding

to it higher. Additionally, we can utilize different penalties, not just the `1 norm.

The different parts w1, . . . , wB each correspond to a different basis. In particular, if

each is a different wavelet basis we can choose to penalize the different coefficients of

each basis differently (for example an `2 penalty on the scaling coefficients and an `1

penalty on the rest).

We now proceed to describe how we can carry out the minimization above. We

describe two methods: one based on so called alternate minimization and one based

on a splitting approach (the ADMM multipler method introduced in Chapter 2). For

the first method, we alternate between minimizing w̄ = (w1, . . . , wN) and v. First,

holding v constant in (6.5.1), we have:

min
w̄

[
||AW−1

1 w1 + · · ·+ AW−1
B wB −K||22 + τ1||w1||1 + · · ·+ τB||wB||1

]
192

with K = b− Cv. Let M =
(
AW−1

1 , . . . , AW−1
B

)
. We thus have:

min
w̄

[
||Mw̄ −K||22 + τ1||w1||1 + · · ·+ τB||wB||1

]
This sparse regularization can then be performed using a number of different methods

introduced in the previous chapters (IRLS, FISTA, etc).

Then, holding w̄ constant in (6.5.1) we have:

min
v

[
||Cv − J ||22 + ||Dv||22

]
where:

J = b−
(
AW−1

1 w1 + · · ·+ AW−1
B wB

)
= b−Mw̄

The solution to the quadratic minimization problem is given by:

CT (Cv − J) +DTDv = 0 =⇒ (CTC +DTD)v = CTJ = CT (b−Mw̄)

We thus arrive at the following simple algorithm, which updates the minimization

problem separately for the two different variables:

193

Algorithm 9: Alternate Minimization Algorithm

Input : The matrices A, C, D and the bases W−1
1 , . . . ,W−1

B , a collection of
thresholds τ1, τ2, τB and a maximum number of iterations M .

Output: An estimate of the minimizing v and w̄ and solution in voxel space
x̄

w̄0 = (0, . . . , 0)T ;
v0 = 0;

for n = 0, 1, . . . ,M do
K = b− Cvn;

w̄n+1 = arg minw̄ ||Mw̄n −K||22 +
B∑
j=1

τj||wj||1;

Solve the linear system: (CTC +DTD)vn+1 = CT (b−Mw̄);
xn+1 = W−1

1 w1 + . . .W−1
B wB;

end
x̄ = xn+1;

As an alternative to this algorithm, we may consider using the ADMM method in-

troduced in Chapter 2. We now briefly describe this second approach to handling

(6.5.1). Consider now for simplicity of analysis that τ1 = τ2 = · · · = τB = τ and

introduce the matrix M that we just defined. Thus, we have:

min
w̄,v

[
||Mw̄ + Cv − b||22 + ||Dv||22 + τ ||w̄||1

]
(6.5.2)

We scale by 1
2

and rewrite as:

min
w̄,v

[
1

2
||Mw̄ + Cv − b||22 +

1

2
||Dv||22 +

1

2
τ ||z||1

]
s.t. w̄ − z = 0 (6.5.3)

Now we note that the smooth part 1
2
||Mw̄+Cv− b||22 + 1

2
||Dv||22 and the non-smooth

part 1
2
τ ||z||1 are separable, so the ADMM method can be applied. The augmented

Lagrangian functional for (6.5.3) becomes:

Lµ(w̄, v, z, y) =
1

2
||Mw̄ + Cv − b||22 +

1

2
||Dv||22 +

1

2
τ ||z||1 + yT (w − z) +

µ

2
||w̄ − z||22

194

The above is differential in w and v with gradients:

∇w̄L = MT (Mw̄ + Cv − b) + y + µ(w̄ − z)

∇vL = CT (Mw̄ + Cv − b) +DTDv

Thus, minimizing the Lagrangian over w̄, v, and z yields:

∇w̄L = 0 =⇒ MT (Mw̄ + Cv − b) + y + µ(w̄ − z) = 0

∇vL = 0 =⇒ CT (Mw̄ + Cv − b) +DTDv = 0

∴ arg min
z
L(w̄, v, z, y) = arg min

z

[
1

2
τ ||z||1 − yT z +

µ

2
||w̄ − z||22

]
= arg min

z

[
τ

µ
||z||1 −

2

µ
yT z + ||z − w̄||22

]
= arg min

z

[
τ

µ
||z||1 + ||z − (w̄ +

1

µ
y)||22

]
= S τ

2µ

(
w̄ +

1

µ
y

)
.

Rearranging ∇w̄L = 0 and ∇vL = 0 we have:

MT (Mw̄ + Cv) + µw̄ = MT b− y + µz

=⇒ (MTM + µI)w̄ +MTCv = MT b− y + µz

CT (Mw̄ + Cv) +DTDv = CT b

=⇒ CTMw̄ + (CTC +DTD)v = CT b.

Thus, setting w̄n+1 = arg minw̄ Lµ(w̄, v, zn, yn) and vn+1 = arg minv Lµ(w̄, v, zn, yn),

we have the update system:

MTM + µI MTC

CTM CTC +DTD

w̄n+1

vn+1

 =

MT b− yn + µzn

CT b

195

followed by the updates:

zn+1 = S τ
2µ

(
w̄n+1 +

1

µ
yn
)

yn+1 = yn + µ(w̄n+1 − zn+1)

µ = ρµ

for ρ > 1. In practice however, the above linear system for w̄ and v is difficult to

implement directly. Numerically, we would need to use some kind of an alternate

scheme to update the two in sequence. We summarize one possible ADMM approach

below:

Algorithm 10: ADMM Based Minimization Algorithm

Input : The matrices M = (AW−1
1 , . . . , AW−1

N), C, and D; a set of thresh-
olds τ1, τ2, . . . , τN ; a parameter ρ > 1 and a maximum number of
iterations Mi.

Output: An estimate of the minimizing v and w̄ and solution in voxel space
x̄

w̄0 = (0, . . . , 0)T ;
v0 = 0;
µ = 1;

for n = 0, 1, . . . ,Mi do
(MTM + µI)w̄n+1 = −MTCvn + µzn − yn +MT b;
(CTC +DTD)vn+1 = −CTMw̄n+1 + CT b;

zn+1 = S τ
2µ

(
wn+1 + 1

µ
yn
)

;

yn+1 = yn + µ(w̄n+1 − zn+1);
µ = ρµ;
xn+1 = Mw̄n+1;

end
x̄ = xn+1;

We now present some solutions. For our data set, the norm of the noise in the data

is not known. To compare our solutions with previous models, we must use another

measure of reconstruction quality: χ2. The reduced χ2 value (normalized by the

196

number of degrees of freedom):

χ2 =
N∑
k=1

|(Ax− b)k|2

N

is a measure of the goodness of fit. A value close to one indicates a good fit within the

noise level in the supplied data b. We compare our reconstructions to those obtained

in [39]. Based on the discussion in the above reference, we look at solutions with a

χ2 value of about 0.6. We now present some reconstructions with different choices

of bases. Each basis is defined by the wavelet name and the number of levels in the

transform. For example, ‘cdf 2’ refers to the CDF-42 transform with 2 levels.

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CHI2

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CHI2

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CHI2

Figure 6.9: Three outputs of linear combinations of three wavelets. The plots at the
top show the inversion results with different sets of wavelet basis. Left: haar 2, cdf
2, cdf 1; middle: cdf3, cdf2, cdf; left: cdf 2, cdf 1, and identity (no wavelets); The
bottom plots show chi-square values versus iteration (the plots are all at about the
same level).

197

Next we compare the dictionary wavelet solution to the solution of the data set

obtained with the LSQR algorithm [34] (basically a Tikhonov regularization approach,

see Chapter 2) at a similar χ2 value; the scaling of the two is different because different

units are used:

Azimut: 90
o

n=(42
o
N,−120

o
E)

 ∆
x
=20km

 ∆
y
=20km

testslice

Min=−2.3328
Max=3.4243

−1 0 1

Azimut: 90
o

n=(42
o
N,−120

o
E)

 ∆
x
=20km

 ∆
y
=20km

testslice

Min=−0.014976
Max=0.05814

−0.0025 0 0.0025

Figure 6.10: Mixed norm dictionary wavelet solution with cdf2, haar2, and identity
bases (left) versus LSQR solution (right). Right figure courtesy of Jean Charlety.

In the mixed norm dictionary wavelet solution above, we imposed the `2 penalty on

the scaling coefficients of the cdf and haar wavelets and the coefficient of the identity

basis and the `1 penalty on all other coefficients. Of course, different choices are

possible leading to slightly different results. We make two comments about the above

results: the first is that the χ2 value of both plots is about the same, while the plots

look somewhat different. The second comment is that we see more detail in the

middle of the US with the dictionary wavelet solution, although it is also somewhat

198

smoother due to the use of the cdf transform. It is hard to prefer one over the other

just from the above picture, but we claim that the dictionary wavelet approach is

more general to using Tikhonov regularization, because when the true model makes

it possible, the use of different bases and penalties (including `2 penalty on identity)

will bring out more details in the final result as compared to the result obtained using

just a single `2 penalty on the identity basis as in the LSQR algorithm.

6.6 Brief Description of Developed Software

In this section we briefly summarize the developed software. The software package

consists of codes that allow one to do the inversion based on the above discussion. The

above reconstructions, including the ones with real data presented in this chapter,

have been obtained using this package. We mention in particular that a parallel

matrix vector multiply package has been developed. This package allows a user to

perform matrix vector and matrix transpose vector multiplications with very large

matrices inside the MATLAB environment, by overloading the default MATLAB

matrix vector multiplication operation and executing instead a parallel C code to do

the operation. In addition, the package handles, implicitly, the use of a dictionary of

different wavelet transforms.

6.7 Chapter Remarks and Conclusions

In this chapter, we presented the application in Geotomography and gave details

of the corresponding inverse problem which is solved in the form of a least squares

problem with constraints. We summarized the mathematical details leading up to

the inversion and showed sample reconstructions obtained using schemes that were

199

discussed in the previous chapters of the thesis. The main takeaway from this chapter

is a construction that is of use to this and other applications. In particular, the idea

of using a dictionary of different bases should be appealing for many models with

different sets of features. This chapter gives an example of how the mathematical

material developed in the previous chapters may be applied to inverse problems from

the physical sciences.

200

Chapter 7

SUMMARY AND

CONCLUSIONS

In this chapter, we summarize the key ideas presented in the first six chapters of this

thesis. The methods presented in this thesis grew out of the work in an application

in Geotomography, and the constraints and challenges imposed by this problem gave

the motivation for the algorithms and techniques that are presented in the previous

chapters. This thesis has contributions in three parts: new numerical techniques

(which are easy to implement and test, and which may be useful for different appli-

cations apart from the one we describe), detailed analytical derivations for some of

these techniques (such as derivations regarding optimality conditions and algorithmic

properties such as boundedness that would be useful for proving properties of related

algorithms), and a tested large scale computational framework, including software,

for the inverse problem.

The inverse problem, described in detail in Chapter 6, has several key characteristics

which impact the type of algorithms that may be used to find reconstructions. It

involves a very large underdetermined linear system with a noisy data vector and a

badly conditioned matrix, from which we would like to find a solution in the least

201

squares sense, since we cannot hope to find a solution to the exact constrained problem

because of the noise. Since the linear system is not well conditioned and underdeter-

mined, additional constraints must be imposed to make the problem well posed. We

use here the assumption (verified in practice) that a sparse solution may be found

under the action of a transform (for example a wavelet transform) and these are the

solutions we are interested in obtaining. Since the system we work with in the appli-

cation is very big (over three million columns), we focus on simple, easy to implement

and easy to parallelize methods which do not require significantly more than matrix

vector and matrix transpose vector multiplications. The reason for this is that access

to the full matrix for our problem is not easily available since that would require

encoding the different rows with a specific choice of wavelet transform. Since we

would like to be able to use different transforms, it is easiest for us to make use of

methods which require only the result of matrix vector multiplications rather than

the individual elements of the matrix. We now describe the contents of the different

chapters.

Following the Introduction, Chapter 2 of the thesis gave an introduction to sparse

regularization. Two typical constraints are often enforced to give sparse solutions:

the minimization of the `0 and `1 norms. In the context of noisy problems, this corre-

sponds to solving the problems: min ||x||0 s.t. ||Ax−b||2 ≤ ε and min ||x||1 s.t. ||Ax−

b||2 ≤ ε which for some constant τ correspond to minimizing the `0 and `1 functionals:

G(x) = ||Ax− b||22 + 2τ ||x||0 and F (x) = ||Ax− b||22 + 2τ ||x||1

When x is expected to be sparse only under a certain transform (in wavelets in

our case), we can replace ||x||1 above with ||Wx||1 where W denotes the desired

transform. While directly solving the `0 problem is combinatorially hard, a wide

variety of approximate methods from compressed sensing exist, that give the right

202

solution with high probability if the right constraints on the system are satisfied.

However, the `0 penalty, which counts the number of nonzero elements, is highly non-

convex and difficult to deal with numerically, because of the existence of local minima.

Additionally, methods which minimize the `0 functional directly, often rely on the

matrix satisfying the Restricted Isometry Property, which amounts to satisfying a

condition of the form:

(1− σs)||y||22 ≤ ||Asy||22 ≤ (1 + σs)||y||22

for every s-columned submatrix As of A for some small constant σs and sparse vectors

y. This is problematic for large matrices which are not well conditioned, since any

such matrix As would likely have a nonzero null space that contains some sparse

vectors (which would mean that Asy = 0 and violate the RIP condition). Thus, in

Chapter 2, we come to the conclusion that methods based on the `0 norm are difficult

to use for problems with our requirements. Hence, the methods developed in this

thesis do not attempt to work directly with the `0 norm.

We go on to describe several classes of methods for `1 optimization, which involves

a convex functional with a single global minimum. As discussed in Chapter 2, the

main difficulty here is treating the non-smooth term ||x||1 =
N∑
k=1

|xk|. There are two

possibilities: to leave the term as is or to replace the term by a smooth approximation.

If the non-smooth term is left untouched, subgradient methods must be used since

the term is not differentiable. Subgradient methods then lead to the soft-thresholding

operation which is a component wise nonlinear operator defined via the minimization

problem: Sτ (b) = arg minx ||x − b||2 + 2τ ||x||1. A simple scheme called the Iterative

Soft Thresholding Algorithm (ISTA) can then be used to minimize the `1 functional.

The scheme can be derived from a so called majorization-minimization approach,

where instead of minimizing the original function, we minimize the function which

203

majorizes it, resulting in a simpler problem and a very straightforward algorithm:

xn+1 = arg min
x
||Ax− b||22 + ||x− xn||22 − ||A(x− xn)||22 + 2τ ||x||1

=⇒ xn+1 = Sτ (xn + AT b− ATAxn)

By use of the above majorization-minimization approach, we show in Chapter 2 that

it makes it easy to show key properties of the above scheme: such as the boundedness

of (xn) and ||xn+1−xn||2 → 0, and makes it possible to prove that all limit points from

the subsequences of sequence (xn) satisfy the correct optimality conditions for the `1

functional. This is shown to hold with minimal assumptions on the spectral norm of

the matrix: ||A||2 < 1 and for any initial guess x0. The analysis we present here, for

this previously well known and popular scheme, is key to the rest of the thesis, where

we use similar analytical techniques to analyze more complicated schemes introduced

in the later chapters.

The disadvantage of ISTA is its slow speed of convergence. In particular, it was shown

in [2] that:

F (xn)− F (x̄) ≤ C||x0 − x̄||22
2n

where x̄ = limn→∞ x
n. This alone motivates the search for different algorithms,

which are of about the same complexity but which converge faster or minimize a

more general functional. For a faster scheme, we introduce in Chapter 2 the existing

FISTA algorithm which employs a simple trick from the work of Nesterov [32] and

performs the same soft thresholding operation on a linear combination of the past

two solutions:

zn = xn−1 +
tn−1 − 1

tn
(xn−1 − xn−2) , tn ∈ R

xn+1 = Sτ (zn + AT b− ATAzn)

204

FISTA, by this simple change, has a significantly faster rate of convergence:

F (xn)− F (x̄) ≤ C2||x0 − x̄||22
(n+ 1)2

We then turn to discussing other fast schemes based on approaches that do not involve

the direct use of soft thresholding. Another fast algorithm, DALM, also discussed in

Chapter 2, is based on the dual space approach, which we revisit later in Chapter 5

in the context of reweighted norms. The idea behind the method is to replace the

constrained version of the `1 minimization problem by its dual, yielding a method of

comparable speed to the FISTA scheme (but without a proved convergence bound

like the above). Chapter 2 introduces other interesting schemes, including coordinate

descent and the ADMM algorithm, both of which we discuss again later.

Chapter 3 introduced a method based on a different two-parameter thresholding func-

tion Sρ,τ . While the FIVTA algorithm no longer minimizes the `1 functional, it was

shown to produce solutions of comparable sparsity and with some improved numerical

properties. The most obvious of these, is the ability to provide a similar end residual

level ||Ax̄ − b||2 using a higher τ compared to FISTA. That is, for a given τ , if x̄

is the solution obtained with FIVTA and ȳ the FISTA solution at the same τ , we

observe that ||Ax̄ − b||2 < ||Aȳ − b||2. Hence, FIVTA can produce comparable solu-

tions to FISTA at a significantly higher τ . At this higher τ the observed numerical

convergence of FIVTA is significantly faster than that of FISTA at the corresponding

lower τ used to obtain the same final residual value. The fact that soft threshold-

ing is not necessarily optimal for sparse applications is not surprising. In particular,

non-convex minimization (which can be done with a different thresholding function

from soft thresholding) has been shown to yield better results in compressive sensing

applications, by being able to recover more with fewer available data; see for example

[9].

205

In Chapter 4, instead of treating the non-smooth term of the `1 functional directly

and using the soft thresholding operator, we have presented two algorithms that

arise out of replacing the non-smooth portion by a smooth approximation. One such

approximation is possible, simply by convoluting the absolute value function with a

smooth function having a shrinking support, such as a narrow Gaussian, which was

shown in Chapter 2. This simple approach results in a smooth approximation to the

`1 functional but is rather crude and does not give good numerical results. For the

two algorithms in Chapter 4, we instead use a reweighted approach that gets more

accurate as the iterations progress:

||x||1 =
N∑
k=1

|xk| ≈
N∑
k=1

wnkx
2
k

where to minimize the `1 functional, we use the weight wnk = 1√
(xnk)2+(εn)2

with the

parameter εn → 0. The trick to proving convergence turns out to be in picking the

parameter sequence (εn) in a suitable way so that the limit points of a converging

subsequence satisfy the required optimality conditions and for that we start with

the same analytical tools introduced in Chapter 2 for the ISTA scheme. Using a

majorization-minimization approach similar to that of ISTA, we derived the first

IRLS algorithm:

xn+1
k =

1

1 + τwnk

(
xnk + AT b− ATAxnk

)
being similar in form to the ISTA scheme. We showed full convergence results using

the εn defined simply by εn = min(εn−1,
√
||xn − xn−1|| + αn) for some small α > 0

and some initial ε0 = 1. We show that with minor modifications for the weights, the

scheme can be extended to minimize a new, more general functional:

||Ax− b||22 + 2
N∑
k=1

λk|xk|qk , 1 ≤ qk < 2

206

which is useful in a structured sparse application, such as the one in our application

(the structure being imposed by the wavelet transform). The analysis of this func-

tional and of the two IRLS algorithms that minimize it is an important new result of

this thesis.

By similar construction to the ISTA scheme using majorization-minimization, we

prove several favorable properties, amongst them that ||xn−xn−1||2 → 0 and that (xn)

is bounded. We then construct a special converging subsequence and show that its

limit point satisfies the optimality conditions of the above generalized functional. In

fact, for a more powerful statement, we show that all limit points from any converging

subsequence satisfy the optimality conditions.

In the second part of Chapter 4, we discuss a scheme that is more complicated at

each step, yet more powerful and with better numerical performance. The scheme

reads simply as:

xn+1 = (ATA+ τΦn)−1AT b

looking somewhat as a generalization of the classical Tikhonov algorithm introduced

in Chapter 2. In the above, Φn is a diagonal matrix containing the elements λkqkw
n
k

where wnk are defined as before. At each iteration, this IRLS method requires a linear

solve, which can be done, for instance, using some variant of a conjugate gradient

method. At this step, the solution of the previous iteration can be used as a warm

start for the linear solve so that at later iterations very few inner linear solve iterations

are required. With this scheme, the number of outer iterations is significantly smaller

and the total runtime can be reduced. The difficulty in the proofs lies again in picking

the right subsequence εn, which is more challenging in this case, since the estimate

||xn+1 − xn||2 → 0 does not (at least readily) come about. The fact that despite

this, convergence analysis has been exhibited (to the generalized functional using the

207

same generalized weights as above), should be of analytical interest for the analysis

of similar algorithms in the future. We again show that all limit points from any

converging subsequence satisfy the optimality conditions. The second IRLS scheme

for the minimization of the new generalized functional is a powerful new numerical

method for various different applications, including the one we consider.

Chapter 5 of the thesis introduced numerical techniques. We discuss another way to

compute the iterates of the second IRLS scheme, which in the case of underdetermined

systems, results in the use of a smaller inverse matrix. Since in the scheme xn+1 =

(ATA + τΦn)−1AT b the only thing that changes between iterations is the diagonal

matrix Φn, ideas for approximation of the inverse update are possible. In the context

of rewighted norms introduced in Chapter 4, we mention that the idea can be applied

also to other algorithms. In particular, we discuss a mixed norm variant of the

dual space augmented lagrangian method introduced in Chapter 2. Although not

thoroughly analyzed, the method seems to have good numerical performance. We

mention also more practical approaches to the coordinate descent scheme, as well as

randomized algorithms for computing the low rank SVD approximation of a matrix

and an approach for estimating the column norms. Both are useful for large problems

since direct techniques (for example the full or even partial SVD) are far too expensive

to compute for large problems without the use of randomization. The randomized

SVD algorithm provides a way of obtaining approximate solutions to large problems

and has been tested through our application on very large matrices. We conclude the

chapter with some numerical illustrations of the different methods.

In Chapter 6, we presented the application in Geotomography, discussing in more

detail the ideas behind the big underdetermined linear system that we work with.

After a simplified discussion of the physics of the inverse problem for the corrections

to the spherically symmetric wave velocity model, we discussed more details about

the matrix from our data set and the cubed sphere coordinate system. We then

208

posed the final form of the inverse problem which contains additional terms due to

corrections to the available data. We presented two approaches to solving this final

form, based on alternate minimization and the ADMM scheme first introduced in

Chapter 2. We discussed the application of the previously mentioned algorithms to

the inverse problem and interesting approaches such as the mixed norm formulation,

where we use a collection of different basis to represent the solution. We feel that this

new mixed basis approach, easily applicable using the developed IRLS algorithms,

has an advantage over the classical `2 penalty technique employed for many years

by Geophysicists for these types of problems. Additionally, we briefly discussed the

developed software framework for solving the inverse problem, taking advantage of

parallel computing.

209

Chapter 8

APPENDIX

8.1 Overview

We provide here the pseudocode for some of the algorithms discussed in the text. In

particular, we present the pseudocode for the newly introduced methods for which full

analysis has been provided. We include the pseudocode for the following algorithms

from the text below: FISTA, FIVTA, IRLS (`1 version), IRLS with FISTA speedup

(which allows the FISTA speedup to be used for the mixed norm case) and IRLS

SYS.

210

8.2 Pseudocode of Algorithms

Algorithm 11: FISTA Algorithm

Input : An m×N matrix A, an initial guess N×1 vector x0, a parameter τ <
maxi(|(AT b)i|), tolerance ε, and the maximum number of iterations
M .

Output: A vector x̄, close to the vector minimizing the `1 functional.

y0 = x0;
t1 = 1;

for n = 0, 1, . . .,M do
xn+1 = Sτ (yn + AT b− ATAyn);

tn+1 =
1+
√

1+4t2n
2

;
yn+1 = xn + tn−1

tn+1
(xn − xn−1);

if ‖xn − xn+1‖ ≤ ε then
break

end
end
x̄ = xn+1;

211

Algorithm 12: FIVTA for Sparse Signal Recovery

Input : An m×N matrix A and a vector b ∈ Rm, a leverage L, tolerance ε,
an estimated sparsity level K, and an initial guess x0.

Output: An estimate x̂ ∈ RN of the signal x

i← 0;
ρ0 ← τ ;
K0 ← N

5
;

L0 ← K0||A∗b||1;
a← 0;

begin
if i = 1 then

xi+1 ← Sρi,τ (xi + A∗b− A∗Axi);
end
else

yi+1 = xi + ti−1
ti+1

(xi − xi−1);

xi+1 ← Sρi,τ (yi + A∗b− A∗Ayi)
end
if ‖xi − xi+1‖ ≤ ε then

break
end
Ki+1 ← nnz(xi+1);

σ ← τ
2
(1 + max(Ki+1−K0,a)

N−K0
);

if σ ≤ ρi then
Li+1 ← Li, ρi+1 ← σ

end
else

Li+1 ← Li + hρi,τ (x
i+1)− hσ,τ (xi+1)

if Li+1 ≥ 0 then
ρi+1 ← σ

end
else

ρi+1 ← max(ρi,
τ
2
(1 + 1

N−K0
)), a← 1

end
end
i← i+ 1;

end
x̂← x(i)

212

Algorithm 13: IRLS `1 version

Input : An m ×N matrix A, an initial guess N × 1 vector x0, a parameter
τ < maxi(|(AT b)i|), a tolerance ε, and the maximum number of
iterations M .

Output: A vector x̄, close to the vector minimizing the `1 functional.

α = 10−3;
ε0 = 1;
for k = 1, . . .,N do

w0
k = 1√

(x0k)2+ε20
;

x1
k = 1

1+τw0
k
(x0

k + (AT b)k − (ATAx0)k);

end
for n = 1, 2, . . .,M do

for k = 1, 2, . . .,N do
εn = min(εn−1,

√
||xn − xn−1||+ αn);

wnk = 1√
(xnk)2+ε2n

;

xn+1
k = 1

1+τwnk
(xnk + (AT b)k − (ATAxn)k);

end
if ‖xn − xn+1‖ ≤ ε then

break
end

end
x̄ = xn+1;

213

Algorithm 14: IRLS with FISTA speedup `1 version

Input : An m ×N matrix A, an initial guess N × 1 vector x0, a parameter
τ < maxi(|(AT b)i|), a tolerance ε, and the maximum number of
iterations M .

Output: A vector x̄, close to the vector minimizing the `1 functional.

α = 10−3;
ε0 = 1;
for k = 1, . . .,N do

w0
k = 1√

(x0k)2+ε20
;

x1
k = 1

1+τw0
k
(x0

k + (AT b)k − (ATAx0)k);

end
y1 = x1;
t1 = 1;
for n = 1, 2, . . .,M do

for k = 1, 2, . . .,N do
εn = min(εn−1,

√
||xn − xn−1||+ αn);

wnk = 1√
(xnk)2+ε2n

;

xn+1
k = 1

1+τwnk
(ynk + (AT b)k − (ATAyn)k);

end
if ‖xn − xn+1‖ ≤ ε then

break
end

tn+1 =
1+
√

1+4t2n
2

;
yn+1 = xn + tn−1

tn+1
(xn − xn−1);

end
x̄ = xn+1;

214

Algorithm 15: IRLS SYS `1 version

Input : An m ×N matrix A, an initial guess N × 1 vector x0, a parameter
τ < maxi(|(AT b)i|), a tolerance ε, and the maximum number of
iterations M .

Output: A vector x̄, close to the vector minimizing the `1 functional.

α = 10−3;
ε0 = 1;
for k = 1, 2, . . .,N do

w0
k = 1√

(x0k)2+(ε0)2
;

(Φ0)k,k = τw0
k;

end
Solve: (ATA+ Φ0)x1 = AT b;

ε1 = min(ε0,
1
N

√
||x1 − x0||);

for k = 1, 2, . . .,N do
w1
k = 1√

(x1k)2+(ε1)2
;

(Φ1)k,k = τw1
k;

end
Solve: (ATA+ Φ1)x2 = AT b;

for n = 2, 3, . . .,M do
εn = min(εn−1, |G(xn−1, wn−1, εn−1)−G(xn−2, wn−2, εn−2)| 14 + αn);

With: G(x,w, ε) = ||Ax− b||22 + τ
N∑
k=1

(
wk(x

2
k + ε2) +

1

wk

)
;

for k = 1, 2, . . .,N do
wnk = 1√

(xnk)2+(εn)2
;

(Φn)k,k = τwnk ;
end
Solve: (ATA+ Φn)xn+1 = AT b;
if ‖xn − xn+1‖ ≤ ε then

break
end

end
x̄ = xn+1;

215

Chapter 9

Bibliography

[1] Amir Beck and Marc Teboulle. Fast gradient-based algorithms for constrained

total variation image denoising and deblurring problems. IEEE Trans. Image

Processing, 18(11):2419 –2434, Nov. 2009.

[2] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm

for linear inverse problems. SIAM J. Imaging Sci., 2(1):183–202, 2009.

[3] Thomas Blumensath. Accelerated iterative hard thresholding. Signal Processing,

92(3):752 – 756, 2012.

[4] Thomas Blumensath and Mike E. Davies. Iterative thresholding for sparse ap-

proximations. J. Fourier Anal. Appl., 14(5-6):629–654, 2008.

[5] Thomas Blumensath and Mike E. Davies. Iterative hard thresholding for com-

pressed sensing. Appl. Comput. Harmon. Anal., 27(3):265–274, 2009.

[6] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.

Distributed optimization and statistical learning via the alternating direction

method of multipliers. Found. Trends Mach. Learn., 3(1):1–122, January 2011.

216

[7] Emmanuel J. Candès, Justin Romberg, and Terence Tao. Robust uncertainty

principles: exact signal reconstruction from highly incomplete frequency infor-

mation. IEEE Trans. Inform. Theory, 52(2):489–509, 2006.

[8] Emmanuel J. Candes and Terence Tao. Decoding by linear programming. IEEE

Trans. Inform. Theory, 51(12):4203–4215, 2005.

[9] Rick Chartrand. Fast algorithms for nonconvex compressive sensing: Mri recon-

struction from very few data. In Int. Symp. Biomedical Imaing, 2009.

[10] F. A. Dahlen, S.-H. Hung, and Guust Nolet. Frechet kernels for finite-frequency

traveltimes. Geophysical Journal International, 141(1):157–174, 2000.

[11] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm

for linear inverse problems with a sparsity constraint. Communications on Pure

and Applied Mathematics, 57(11):1413–1457, 2004.

[12] Ingrid Daubechies, Ronald DeVore, Massimo Fornasier, and C. Sinan Güntürk.

Iteratively reweighted least squares minimization for sparse recovery. Comm.

Pure Appl. Math., 63(1):1–38, 2010.

[13] Ingrid Daubechies, Massimo Fornasier, and Ignace Loris. Accelerated projected

gradient method for linear inverse problems with sparsity constraints. J. Fourier

Anal. Appl., 14(5-6):764–792, 2008.

[14] David Donoho, Iain Johnstone, and Andrea Montanari. Accurate prediction of

phase transitions in compressed sensing via a connection to minimax denoising.

arXiv:1111.1041, 2011.

[15] David L. Donoho. For most large underdetermined systems of linear equations

the minimal l1-norm solution is also the sparsest solution. Comm. Pure Appl.

Math., 59(6):797–829, 2006.

217

[16] David L. Donoho and Michael Elad. Optimally sparse representation in general

(nonorthogonal) dictionaries via l1 minimization. Proc. Natl. Acad. Sci. USA,

100(5):2197–2202 (electronic), 2003.

[17] David L. Donoho and Michael Elad. Optimally sparse representation in general

(nonorthogonal) dictionaries via l1 minimization. Proc. Natl. Acad. Sci. USA,

100(5):2197–2202 (electronic), 2003.

[18] David L. Donoho and Xiaoming Huo. Uncertainty principles and ideal atomic

decomposition. IEEE Trans. Inform. Theory, 47(7):2845–2862, 2001.

[19] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least

angle regression. Ann. Statist., 32(2):407–499, 2004. With discussion, and a

rejoinder by the authors.

[20] Michael Elad. Sparse and redundant representations. Springer, New York, 2010.

From theory to applications in signal and image processing, With a foreword by

Alfred M. Bruckstein.

[21] H. Firouzi, M. Farivar, M. Babaie-Zadeh, and C. Jutten. Approximate Sparse

Decomposition Based on Smoothed L0-Norm. ArXiv e-prints, November 2008.

[22] Massimo Fornasier and Holger Rauhut. Iterative thresholding algorithms. Appl.

Comput. Harmon. Anal., 25(2):187–208, 2008.

[23] Jerome H. Friedman and Werner Stuetzle. Projection pursuit regression. J.

Amer. Statist. Assoc., 76(376):817–823, 1981.

[24] Jean-Jacques Fuchs. On sparse representations in arbitrary redundant bases.

IEEE Trans. Inform. Theory, 50(6):1341–1344, 2004.

218

[25] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins

Studies in the Mathematical Sciences. Johns Hopkins University Press, Balti-

more, MD, third edition, 1996.

[26] William W. Hager. Updating the inverse of a matrix. SIAM Rev., 31(2):221–239,

1989.

[27] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness:

probabilistic algorithms for constructing approximate matrix decompositions.

SIAM Rev., 53(2):217–288, 2011.

[28] Per Christian Hansen and Dianne Prost O’Leary. The use of the L-curve in the

regularization of discrete ill-posed problems. SIAM J. Sci. Comput., 14(6):1487–

1503, 1993.

[29] Ignace Loris, Guust Nolet, Ingrid Daubechies, and F. A. Dahlen. Tomographic

inversion using `1-norm regularization. Geophys. J. Int., 170:359–370, 2007.

[30] S.G. Mallat and Zhifeng Zhang. Matching pursuits with time-frequency dictio-

naries. Signal Processing, IEEE Transactions on, 41(12):3397 –3415, dec 1993.

[31] D. Needell and J. A. Tropp. CoSaMP: iterative signal recovery from incomplete

and inaccurate samples. Appl. Comput. Harmon. Anal., 26(3):301–321, 2009.

[32] Yurii Nesterov. Gradient methods for minimizing composite objective function.

www.optimization-online.org, (2007076), 2007.

[33] G. Nolet. A Breviary of Seismic Tomography: Imaging the Interior of the Earth

and Sun. Cambridge University Press, 2008.

[34] Christopher C. Paige and Michael A. Saunders. LSQR: an algorithm for sparse

linear equations and sparse least squares. ACM Trans. Math. Software, 8(1):43–

71, 1982.

219

[35] Shie Qian and Dapang Chen. Signal representation using adaptive normalized

gaussian functions. Signal Processing, 36(1):1 – 11, 1994.

[36] R. Tyrrell Rockafellar. Convex analysis. Princeton Landmarks in Mathematics.

Princeton University Press, Princeton, NJ, 1997. Reprint of the 1970 original,

Princeton Paperbacks.

[37] C. Ronchi, R. Iacono, and P.S. Paolucci. The cubed sphere: A new method for

the solution of partial differential equations in spherical geometry. Journal of

Computational Physics, 124(1):93 – 114, 1996.

[38] Robert Sadourny. Forced Geostrophic Adjustment in Large Scale Flow. Labora-

torie de Météorologie Dynamique, Paris, France, 1972.

[39] Karin Sigloch. Multiple-frequency body-wave tomography. Ph.d. thesis, Princeton

University, mar 2008.

[40] Karin Sigloch, Nadine McQuarrie, and Guust Nolet. Two-stage subduction his-

tory under North America inferred from multiple-frequency tomography. Nature

Geoscience, jun 2008.

[41] Frederik J. Simons, Ignace Loris, Guust Nolet, Ingrid C. Daubechies, S. Voronin,

J. S. Judd, P. A. Vetter, J. Charlty, and C. Vonesch. Solving or resolving global

tomographic models with spherical wavelets, and the scale and sparsity of seismic

heterogeneity. Geophysical Journal International, 187(2):969–988, 2011.

[42] Joel A. Tropp and Anna C. Gilbert. Signal recovery from random measurements

via orthogonal matching pursuit. IEEE Trans. Inform. Theory, 53(12):4655–

4666, 2007.

220

[43] S. Voronin and H. Woerdeman. A new iterative firm-thresholding algorithm for

inverse problems with sparsity constraints. Applied and Computational Harmonic

Analysis, 2012.

[44] Yilun Wang and Wotao Yin. Sparse signal reconstruction via iterative support

detection. SIAM J. Imaging Sci., 3(3):462–491, 2010.

[45] Tong T. Wu and Kenneth Lange. Coordinate descent algorithms for lasso penal-

ized regression. March 2008.

[46] Allen Y. Yang, Arvind Ganesh, Zihan Zhou, Shankar Sastry, and Yi Ma. A

review of fast l1-minimization algorithms for robust face recognition. CoRR,

abs/1007.3753, 2010.

[47] Junfeng Yang and Yin Zhang. Alternating direction algorithms for `1-problems

in compressive sensing. SIAM J. Sci. Comput., 33(1):250–278, 2011.

221

