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1 Systems of ODEs and Nullclines

Textbook: Section 2.6

Introduction to systems of ODEs. Simple examples come from mixing problems - a tank contains
some water, a solution containing salt flows in through one pipe and the mixed solution flows out of
the tank through a different pipe. There are two variables: the amount of liquid in the tank W (t) and
the amount of salt in tank x(t). If the flow in doesn’t equal to flow out, then both change with time
resulting in a system of two differential equations. If flow rate in is same as flow rate out then only
x(t) changes with time, as W ′(t) = 0 in that case.

When we have a system of ODEs:

dx

dt
= f(x, y) and

dy

dt
= g(x, y)

then the method of Nullclines can be used to analyze equilibrium points and plot simple behavior
of the solution curves given in the x − y plane at each time t by the vector (x(t), y(t)). Note that
the slope of the solution curve at any given point of the x − y plane is the vector x′(t)̂i + y′(t)ĵ =
f(x(t), y(t))̂i + g(x(t), y(t))ĵ. In particular, when f(x, y) = 0, we have that the slope of the solution
is vertical (it is given by g(x, y)ĵ). Thus, the set of points (x, y) satisfying dx

dt = f(x, y) = 0 is known

as the the vertical (or v) nullclineand has slope ~sv = g(x, y)ĵ (pointing down or up). The set of points
(x, y) satisfying dy

dt = g(x, y) = 0 is known as the horizontal (or h) nullcline and has slope ~sh = h(x, y)̂i
(pointing left or right). Points (x, y) for which f(x, y) = 0 = g(x, y) are equilibrium points of the ODE
system. A simple example is:

dx

dt
= 1− x− y = f(x, y)

dy

dt
= 1− x2 − y2 = g(x, y)

Then the horizontal nullcline is the set of points g(x, y) = 0 =⇒ x2 +y2 = 1, a circle of radius 1. The
vertical nullcline is the set of points f(x, y) = 0 =⇒ x + y = 1, which is a line. Equilibrium points
are (1, 0) and (0, 1). To determine if the equilibrium points are stable or unstable we must plot the
directions of the slopes along the horizontal and vertical nullclines. Along the horizontal nullcline the
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slopes are pointing left or right. To determine direction at any given point note that the slope direction
is given by the vector dx

dt î and hence depends on the sign of dx
dt = f(x, y) (positive sign corresponds

to the right direction, negative to the left). Similarly, along the vertical nullcline the slopes point
either up or down. The slope has the direction of the vector dy

dt ĵ and so depends on the sign of g(x, y)
(positive sign corresponds to up, negative to down). From this we can determine that (0, 1) is stable
(solution curves around the point do not go away from the point) and (1, 0) unstable (solution curves
around the point go away from the point in some directions) equilibrium. See handwritten examples
at the end of the pdf.

Other references:

• mcb.berkeley.edu/courses/mcb137/exercises/Nullclines.pdf, http://www.sosmath.com/
diffeq/system/qualitative/qualitative.html

2 Vectors and Matrices

Textbook: Section 3.1,3.2,3.3 (matrices and basic linear algebra, system of equations, RREF, matrix
inverses)

Vectors are written as b ∈ Rm, which denotes a column or row vector of m rows (usually, column
vector by default). For a row vector, one would write bT . Example:

b =

ñ
α
β

ô
and bT =

î
α β

ó
We write real matrices using similar notation: A ∈ Rm×n denotes a real valued matrix of m rows and
n columns. Basic operations with matrices: addition, scalar multiplication, matrix-matrix and matrix
vector multiplication. Note that matrix-matrix multiplication is defined as C = AB for matrices
A ∈ Rm×r and B ∈ Rr×n resulting in C ∈ Rm×n. Matrix multiplication is not defined for matrices
A and B for which the number of columns of A is different from the number of rows of B. If the
conditions are satisfied then Cij (the element of C in row i and column j) is given by:

Cij =
r∑

k=1

AikBkj

For each entry (i, j), this corresponds to taking row vector i of A and dotting it with the column
vector j of B. For matrix-vector multiplication, we must have that A ∈ Rm×n and x ∈ Rn where x is
a column vector of n elements. Then b = Ax is defined and:

bi =
n∑

k=1

Aikxk

The transpose of a matrix is always defined. If A has elements aij then AT has elements aji (the
column vectors of A become the row vectors of AT and vice versa). Note that if the matrix matrix
product AB is defined, then it can be proved using componentwise notation and the formula for
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matrix-matrix multiplication that (AB)T = BTAT . A particular special matrix is called the identity
matrix. This matrix is diagonal (has nonzero elements only along the diagonal). For example, a 2× 2
identity matrix I2 is:

I2 =

ñ
1 0
0 1

ô
=⇒ Ix = x and IA = AI = A

for any m×n matrix A when I is n×n. Introduction to the range (or column space) of a matrix. For
a matrix A ∈ Rm×n the range is the set of vectors Ax for all possible vectors x ∈ Rn. For example for
the matrix: ñ

1 2
0 0

ô
the range is the set of all vectors {Ax|x ∈ R2} of the form:ñ

C
0

ô
for C ∈ R. Since, for any x ∈ R2, we have:

Ax =

ñ
1 2
0 0

ô ñ
x1
x2

ô
=

ñ
x1 + 2x2

0

ô
This means the range is only a subset (in fact, a subspace) of R2.

Linear systems of equations using matrix methods: a set of linear equations can have a unique
solution, infinitely many solutions, or no solution. We write down a system of equations in matrix
form Ax = b using the augmented matrix construction [A|b]. Consider for example the system of
equations:

x+ y = 4

x− y = 0

Then we can write: ñ
1 1 4
1 −1 0

ô
→
ñ
1 1 4
0 −2 −4

ô
→
ñ
1 1 4
0 1 2

ô
→
ñ
1 0 2
0 1 2

ô
by performing elementary row operations on the matrix (replacing a row by a sum or difference of
the current row and a scalar multiple of another row, scaling a row, switching rows) and reducing the
matrix to reduced row echelon form (RREF). In this case, we see that the system of equations has a
unique solution x = y = 2. Row reduced echelon form is characterized as follows:

• All zero rows are at the bottom.

• The leading coefficient (first nonzero number from the left) of a nonzero row is a 1 and always
strictly to the right of the leading coefficient of the row above it.

• Every leading coefficient (the pivot element 1) is the only nonzero entry in its column.
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Note: if only the first two requirements are satisfied, matrix is said to be in row echelon form. As an
another example consider the reduction sequence: 1 2 1

−2 −3 1
3 5 0

→
1 2 1

0 1 3
3 5 0

→
1 2 1

0 1 3
0 −1 −3

→
1 2 1

0 1 3
0 0 0

→
1 0 −5

0 1 3
0 0 0


Note that the last matrix R obtained from A via elementary row operations is in reduced row echelon
form (note the pivot columns have pivots as 1 and these are the only nonzeros in the respective
columns). Consider now to find the nullspace of the matrix above (the set of solutions to Ax = 0).
We have the reduction:  1 2 1 | 0

−2 −3 1 | 0
3 5 0 | 0

→
1 0 −5 | 0

0 1 3 | 0
0 0 0 | 0


which implies x1 − 5x3 = 0 and x2 + 3x3 = 0. If we set x3 = α, we get x1 = 5α and x2 = −3α. So
that the set of solutions to Ax = 0 is given by:

x =

x1x2
x3

 =

 5α
−3α
α

 = α

 5
−3
1

 for α ∈ R

This means the basis for the nullspace of this A is one dimensional, consisting of the vector above and
the nullspace itself is defined as the span of this vector:

null(A) = span

Ö 5
−3
1


è

In cases, where the system has infinitely many solutions or no solutions reduction to form where the
left part of the augmented matrix (everything other than the last, rightmost column) is the identity
matrix as above is not possible. The process of solving linear systems by transforming the augmented
matrix is known as Gaussian Elimination.

Superposition principle. The map L(x) = Ax is linear for any matrix A ∈ Rm×n and x ∈ Rn×1.
This is easy to verify: L(C1x+C2y) = C1L(x) +C2L(y). Thus, a solution to the system of equations
L(x) = b (same as Ax = b) is given as the sum of the solution to the homogeneous problem and a
particular solution x = xh+xp, where xh satisfies Axh = 0. The homogeneous solution can be obtained
by forming the augmented matrix (A|0) (i.e. last column is all zeros) and obtaining the row reduced
form. A particular solution is any solution to the system. It can be obtained by setting arbitrary
values for some variables as long as the non-homogeneous system of equations remains satisfied. Note
that in the case when Ax = b has infinitely many solutions, it is possible to write the same solution
family many different ways.

Matrix inverses. For square matrices A ∈ Rn×n a matrix inverse A−1 sometimes exists. It exists
if and only if det(A) 6= 0. The inverse satisfies AA−1 = A−1A = In where In is the identity matrix
(usually denoted just by I, irrespective of size). Note that in contrast to this, typically AB 6= BA
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even if both operations are defined. If the inverse matrix exists, the solution to the system Ax = b
is unique: it is given by x = A−1b. Again, this only holds for square matrices. Another consequence
of the inverse matrix existing is that the only solution to the homogeneous equations Ax = 0 is
x = A−10 = 0, which is the same as saying that the null space of the matrix (which is the set
{x : Ax = 0}) is trivial, consisting only of the zero vector. If the inverse matrix does not exist then
the null space contains other vectors besides the zero vector. Inverse matrices can be found using row
reduction. By reducing the matrix [A|I] to [I|A−1]. For example, consider the reduction below to find
the inverse of the matrix:

A =

1 0 1
1 −1 1
1 −1 2


Notice that det(A) 6= 0 so the inverse matrix A−1 exists (it’s useful to check this before carrying out
the row reduction work). We obtain:

[A|I] =

1 0 1 |1 0 0
1 −1 1 |0 1 0
1 −1 2 |0 0 1

→
1 0 1 |1 0 0

0 −1 0 | − 1 1 0
1 −1 2 |0 0 1

→
1 0 1 |1 0 0

0 −1 0 | − 1 1 0
0 −1 1 | − 1 0 1


→

1 0 1 |1 0 0
0 1 0 |1 −1 0
0 −1 1 | − 1 0 1

→
1 0 1 |1 0 0

0 1 0 |1 −1 0
0 0 1 |0 −1 1

→
1 0 0 |1 1 −1

0 1 0 |1 −1 0
0 0 1 |0 −1 1


Hence, we conclude that for:

A =

1 0 1
1 −1 1
1 −1 2

 the inverse matrix is: A−1 =

1 1 −1
1 −1 0
0 −1 1


Determinants are defined also for square matrices (which makes sense as they can be used to test

if an inverse matrix exists or not). The determinant of a matrix is a scalar det(A) = d ∈ R and can be
negative, positive or zero. The determinant can be computed by expanding along any row or column
of the matrix. Often, it greatly simplifies the computation to select the right row or column to expand
along. A good example is an upper triangular matrix. The formula for the determinant of an n × n
matrix is:

|A| =
n∑

j=1

aij(−1)i+j |Mij |

where the expansion is done along the i-th row, or:

|A| =
n∑

i=1

aij(−1)i+j |Mij |

where the expansion is done along the j-th column. The term |Mij | denotes the determinant of the
so called minor matrix obtained by deleting the i-th row and j-th column of A. Determinants satisfy
several properties: for example, |AB| = |A||B| and |A−1| = 1

|A| (notice that if A−1 exists then |A| 6= 0
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in previous fraction). To show the previous equality, note that |AA−1| = |I| = |A||A−1|. Since |I| = 1,
|A−1| = 1

|A| follows.

The determinant can be used to obtain solutions to square linear systems Ax = b (where A is
square matrix) and A−1 exists. In this case, the components of the unique solution x can be obtained
via Cramer’s rule. The advantage of this approach is that it does not involve the computation of the
inverse matrix or any kind of RREF procedure, just computations of determinants.

Other references:

• pdfs https://math.dartmouth.edu/archive/m23s06/public_html/handouts/row_reduction_
examples.pdf, http://www.sosmath.com/matrix/system1/system1.html

• determinants https://www.math.drexel.edu/~jwd25/LM_SPRING_07/lectures/lecture4B.html

• http://www.millersville.edu/~bikenaga/linear-algebra/matrix/matrix.html

• Diffeq for Engineers book (Matrices and Linear Algebra Section) http://www.jirka.org/diffyqs/
diffyqs.pdf

3 Elementary Row Operations, Rank, Vector Spaces

Textbook: Section 3.4,3.5 (review of linear systems and inverses, rank of a matrix, vector spaces)

Recall the three allowed row operations used to get a matrix into RREF form:

• (A) Interchange two rows: Ri ←→ Rj .

• (B) Scale a row by a constant: R∗i ← kRi for k ∈ R.

• (C) Replace a row by the sum of the current row plus a scalar multiple of a different row:
R∗i ← Ri + kRj for k ∈ R and i 6= j.

It turns out that these three operations can be performed via matrix matrix multiplication with
elementary matrices. For A ∈ R3×3, the following transformation matrices can be used:

Eint =

0 1 0
1 0 0
0 0 1

 , Escale =

1 0 0
0 k 0
0 0 1

 , Erepl =

1 0 0
0 1 0
k 0 1


We apply these matrices from the left forming B = EA. The first matrix acts to interchange rows 1
and 2. The second matrix scales the second row by k and the third matrix replaces the third row by
the sum of k times the first row and the original third row. Thus, any matrix A can be turned into R
where R = EkEk−1 . . . E1A (via a sequence of products of elementary matrices).

The concept of matrix rank is important to judge the type of solutions to a linear system Ax = b
with a general matrix A ∈ Rm×n (not necessarily square). We can have either no solution, a unique
solution or infinitely many solutions. The rank of a matrix M is max number of linearly independent
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column vectors and is also equal to the max number of linearly independent row vectors (i.e. rank of
M and of MT is the same and is always ≤ min(m,n)). For example, the following matrix has rank 2:1 3 0

2 6 2
3 9 4


We can determine this two ways: reduce to RREF (or at least to row echelon form) and find the
existence of two pivot columns, or simply observe above that column vectors one and two are multiples
of each other and the third column cannot be written as a linear combination of the first two. In
general, for larger matrices, to determine rank, row reduction is necessary and rank is equal to the
number of pivot columns in rref(A). An m × n matrix can have rank at most min(m,n). A matrix
with all zero entries has zero rank. Otherwise the rank is at least one. We have the following results
regarding solutions. We take the system and form the augmented matrix (A|b) (i.e. add vector b as
last column). Notice that if x = (x1, . . . , xn)T , then A = [a1, . . . , an] and Ax = x1a1 + · · · + xnan (a
linear combination of the columns of A). Hence x is a solution if and only if b is a linear combination
of the columns of A (i.e. b = x1a1 + · · ·+ xnan so b is linearly dependent with the column vectors of
A). Then:

• If, rank(A) < rank(A|b) then there is no solution to Ax = b (this relationship between the ranks
implies that b is linearly independent with the column vectors of A and cannot be written as a
linear combination of them).

• If, rank(A) = rank(A|b) = n, then there is a unique solution.

• If, rank(A) = rank(A|b) < n, there are many solutions to the system.

Note that for squared systems, it is enough to check that the determinant of A is nonzero, to conclude
that a unique solution exists (as det(A) 6= 0 implies the existence of A−1).

Vector Spaces. A vector space V̄ is a collection of objects (vectors) which satisfy a number of
properties. In a vector space the vectors may be added or subtracted and multiplied by scalars and
still remain part of the space. Note that vectors can be functions of t (time dependent) or simply
one element long. Thus when we refer to vector spaces, we may actually be referring to collections of
functions f(t) or polynomials, not necessarily vectors of several elements. For example, we can make
a one to one correspondence between polynomials of up to second degree and 3 variable vectors. The
collection of objects is called a vector space if it satisfies a number of properties. Amongst these, the
primary properties are as follows. Let us assume that x, y, z ∈ V̄ are elements of the vector space and
C and D are scalar constants. Then:

• (1) x+ y ∈ V̄ (that is, for any two elements in the space, their sum must be in the space)

• (2) Cx ∈ V̄ (any scalar multiple of an element in the space is also in the space)

• (3) 0 ∈ V̄ (there is a zero element in the space)

• (4) −x ∈ V̄ (for any element in the space it’s negative is also in the space)
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where properties (3) and (4) above are just special cases of (2). Other properties concern basic linearity
operations with two elements of the space: The reason we separate the two sets of properties is that

usually (1) − (2) are used to disprove that something is a vector space, while the rest are linearity
properties which are easier to see if they are satisfied or not. For example, consider the space of odd
degree polynomials. Then p1 = x3 + x2 is in the space and p2 = −x3 + 2x2 is in the space. But the
sum p1 + p2 = 3x2 is not in the space. Hence, this space is not a vector space. Consider the space of
all pairs of real numbers (x, y) such that x ≥ y. This is not a vector space because if some element
p ∈ V̄ then it is not necessarily true that −p ∈ V̄ . For example for p = (2, 1), −p = (−2,−1) and −p is
not in the space since −2 < −1. Some examples of vector spaces are the space of real vectors Rm (for
any m ≥ 1), the set of solutions to the linear homogeneous differential equation L[y] = 0 where L is a
linear differential operator, and the space of polynomials of degree less than or equal to n. Notice for
example, that the set of invertible n× n matrices is not a vector space. If two matrices are invertible
(then both have determinant nonzero), but it’s possible that their sum A + B has determinant zero,
which would make it non-invertible and so the sum may not be in the space. Also, the set of solutions
to a nonlinear homogeneous equation y′+y2 = 0 is not a vector space as it fails the linearity properties
(i.e. if y1 and y2 satisfy the equation, y1 + y2 will not due to the non-linearity - this is easy to verify
by plugging in into the equation). The set of solutions to a linear non-homogeneous equation is also
not a vector space for the same reason. However, the set of solutions to an equation that is linear and
homogeneous is a vector space.

Other references:

• Pauls Notes http://tutorial.math.lamar.edu/Classes/Alg/AugmentedMatrix.aspx,http:
//tutorial.math.lamar.edu/Classes/Alg/AugmentedMatrixII.aspx

• Matrix rank www.math.tamu.edu/~fnarc/psfiles/rank2005.pdf

• Vector Spaces and Subspaces http://www.math.niu.edu/~beachy/courses/240/06spring/

vectorspace.html

• Wikibook on Linear Algebra http://en.wikibooks.org/wiki/Linear_Algebra/Definition_

and_Examples_of_Vector_Spaces
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4 Linear independence of vectors and functions, span, basis, dimen-
sion

Textbook: Section 3.6 (linear independence, Wronskian, span, basis, dimension)

Linear independence of vectors. A set of vectors {v1, . . . , vr} of n elements (i.e. each vk ∈ Rn) is
linearly independent if and only if the solution to the equation:

C1v1 + · · ·+ Crvr = ~0 (4.1)

is satisfied only by the solution C1 = · · · = Cr = 0. This means that no vector in the set can be
written as a linear combination of other vectors in the set. Note that this all zero solution will always
satisfy the above equation (4.1). If it is the only solution, then the vectors are linearly independent.
In not, the vectors are linearly dependent and some vectors in the set may be written as a linear
combination of the others. Notice that if we have two vectors v1 and v2 which are linearly dependent,
then C1v1 + C2v2 = 0 for some nonzero C1 and C2, which implies that v1 = −C2

C1
v2, which means

that v1 is a constant multiple of v2. So for two vectors it’s easy to verify if or not they are linearly
independent, just by inspection. If we have r vectors of dimension n (i.e. each vector has n elements)
and r > n, then at most n of them can be linearly independent, since if we form a matrix out of
these vectors the rank is at most min(r, n). If we have n vectors of n elements each, we can use the
determinant test to check independence. We stack the vectors as columns or rows of the matrix and
compute the determinant. If it is nonzero, they are linearly independent. In the case of r vectors with
n elements where r < n, we have to do row reduction. The rank of the resulting matrix is at most
min(r, n) = r in this case, so we have to check the number of pivot columns - if the rank is indeed r,
the vectors are linearly independent, otherwise they are linearly dependent.

The span of a set of vector is the set of all possible linear combinations of these vectors. It is
equivalent to the range of a matrix whose columns are the vectors in the set. Thus for example, the
span of vectors:

e1 =

ñ
1
0

ô
and e2 =

ñ
0
1

ô
Is all the vectors of the form C1e1 + C2e2 for C1, C2 ∈ R:

span(e1, e2) =

ñ
C1

C2

ô
= R2

The column space of a matrix is the span of the column vectors of the matrix. That is, a matrix
A ∈ Rm×n is composed of n column vectors a1, . . . , an and the column space of A is the span of this
set of vectors. It is also known as the range of the matrix A. For A ∈ Rm×n, the range is the set of all
possible {Ax} for x ∈ Rn (this is the same as the set of all linear combinations of the matrix columns).

Note that an m×n matrix A can be represented as a set of n column vectors {v1, . . . , vm} or m row
vectors {r1, . . . , rm}. The column space or range of A is the span of all the column vectors. While the
row space of A is the span of the row vectors. Note that while the reduced matrix R obtained from A
via elementary row operations has the same row space as A, it does not have the same column space.
Hence, for basis of column space, we must select the linearly independent columns of A, which we
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usually pick via the pivot columns of R. For basis of row space, we can take the linearly independent
rows of A (but care must be taken if switching is done) or those of R (a safer alternative).

For a set of functions f1(t), . . . , fn(t) we can also talk about linear independence and if they are
(n − 1) times differentiable, we can make use of the concept of the Wronskian determinant. Assume
that the functions are all in the space Cn−1 (that is (n−1) times continuously differentiable). For linear
independence we must have that C1f1(t) + · · · + Cnfn(t) = 0 is satisfied only for C1 = · · · = Cn = 0
for all t ∈ I where I is some interval like the whole real line or a subset of that. Linear independence
of functions is a very strong condition since the all zero solution being the only solution must hold
for all t in the interval. Likewise, if the functions are linearly dependent, the same nonzero constants
must satisfy the equation C1f1(t) + · · ·+Cnfn(t) = 0 for all t. We can setup a system of equations by
differentiating this equation and forming additional equations:

n∑
k=1

Ckfk(t) = 0

n∑
k=1

Ckf
′
k(t) = 0

n∑
k=1

Ckf
′′
k (t) = 0

...
n∑

k=1

Ckf
(n−1)
k (t) = 0

so that we have an n × n system of equations. We can then write this in matrix form as follows,
where the n × n matrix is known as the Wronskian matrix Mw (whose determinant W is known as
the Wronskian determinant):

y1(t) y2(t) · · · yn(t)
y′1(t) y′2(t) . . . y′n(t)

...
... · · ·

...

y
(n−1)
1 (t) y

(n−1)
2 (t) · · · y

(n−1)
n (t)



C1

C2
...
Cn

 =


0
0
...
0


We can write this for short as Mw c̄ = 0̄ where the matrix Mw(t) is dependent on t. If M−1w exists then
c̄ = M−1w 0̄ = 0̄. But since this is a square system, M−1w exists if det(Mw(t)) = |W (t)| 6= 0. So this
means that the set of functions will be linearly independent when |W (t)| 6= 0. But it turns out this
needs to be shown at just a single t on the interval I.

The following lemma holds by virtue of the fact that when f1, . . . fn are linearly dependent, the
columns of Mw(t) above will have linear dependency of all t ∈ I.

Lemma 4.1 If a set of n functions f1(t), . . . , fn(t) defined on the interval t ∈ I are (n − 1) times
continuously differentiable and the set is linearly dependent (that is there are constants C1, . . . , Cn,
not all zero, such that C1f1(t) + · · ·+Cnfn(t) = 0), then the Wronskian W (t) (the determinant of the
Wronskian matrix) is identically zero, W (t) = 0 for all t ∈ I.
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Note that the converse of this statement does not hold without extra conditions! As an example, take
the functions f(t) = t2 and g(t) = t|t| on all of R. The Wronskian determinant for these functions is
identically zero for all t, but the functions are in fact linearly independent on the whole real line, since
there is no constant such that one is a multiple of the other for all t. However, the contrapositive of
this statement does hold. Taking the contrapositive of this statement (contrapositive is always true if
the statement is true), we have that:

Lemma 4.2 If a set of n functions f1(t), . . . , fn(t) defined on the interval t ∈ I are (n − 1) times
continuously differentiable and their Wronskian is nonzero, W (t) 6= 0 for some t ∈ I (need to find just
one such t ∈ I), then the set of functions is linearly independent on all of I.

So to recap, for showing independence, it’s enough to show Wronskian is nonzero at one value of
t. For showing dependence, Wronskian alone is not of use. Even if we have that W (t) = 0 even on
the whole interval t ∈ I, we cannot conclude anything about the linear dependence or independence
of functions on I without additional conditions. However, if we do know the functions are linearly
dependent, then we know the Wronskian identically vanishes on the interval (however, this argument
is largely useful only for it’s contrapositive).

For example, let:
x1(t) = t and x2(t) = t2

Notice that these functions are clearly independent on all of R. Then the Wronskian determinant is:

W [x1(t), x2(t)] = W (t) =

∣∣∣∣∣x1(t) x2(t)
x′1(t) x′2(t)

∣∣∣∣∣ =

∣∣∣∣∣t t2

1 2t

∣∣∣∣∣ = 2t2 − t2 = t2

We can conclude that x1(t) and x2(t) form a set of linearly independent vector functions on the interval
t ∈ R, just because the Wronskian is nonzero for some t ∈ R, for example, at t = 1. (Note that the
Wronskian is zero at zero, but this does not matter as long as it’s nonzero at some value of t).

The dimension of a vector space is an integer which is the minimum number vectors which are
linerly independent and span the space (hence form a basis for the space). A set of vectors forms
a basis for a space if they span the space and are linearly independent. Suppose we have a vector
space V and a basis of elements S = {u1, . . . , un}. Then any element of V can be represented
uniquely by a linear combination of elements of S. To show this, suppose for some v ∈ V , we
have two representations: v = C1u1 + . . . Cnun and v = D1u1 + · · · + Dnun. Then it must be that
0 = (C1 −D1)u1 + · · · + (Cn −Dn)un. But as the n vectors are linearly independent, it follows that
Ck = Dk for k = 1, . . . , n and so the two representations are the same. Another very useful result is
the following:

Lemma 4.3 Suppose V is a vector space with dim(V ) = n and S = {v1, . . . , vn} is a linearly inde-
pendent set of vectors in V . Then span(S) = V and so S is a basis for the vector space V.

To use the above lemma we must know the dimension of the space. For example, dim(Rn) = n and
dim(Pn) = n+ 1 (the later is the set of polynomials of degree less than or equal to n). As an example,
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consider the subspace W of the vector space V = R4:

W =



x1
x2
x3
x4

 |x1 + x3 = 0, x2 = x4


(To see why this is a subspace of R4, not just a subset, check that properties (1), (2) of the vector
space list called: that is the sum of two elements and any scalar multiple of an element is still in the
set). Out of the overdetermined system of equations, we can assign freely two of the variables, for
instance x3 = α and x4 = β with α, β ∈ R. Then we have x2 = β and x1 = −α and the general set of
solutions is: 

x1
x2
x3
x4

 =


−α
β
α
β

 = α


−1
0
1
0

+ β


0
1
0
1


Hence, the subspace W is spanned by the vectors u, v ∈ R4:

u =


−1
0
1
0

 and v =


0
1
0
1


Since these two vectors are linearly independent (because they are not multiples of each others) they
also form a basis of the set W . The dimension of W is thus 2.

Notice that a set of linearly independent vectors in a vector space V can always be completed into
a basis, by adding additional vectors to make it span the space.

Other references:

• Pauls Notes http://tutorial.math.lamar.edu/Classes/DE/Wronskian.aspx

• Wikipedia http://en.wikipedia.org/wiki/Wronskian#The_Wronskian_and_linear_independence

• Basis and Dimension https://www.youtube.com/watch?v=AqXOYgpbMBM

• Various topics https://www.math.ucdavis.edu/~linear/linear.pdf
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