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Textbook: Section 4.1 - 4.3

The general homogeneous second order ODE with constant coefficients is:

L(y) = ay′′(t) + by′(t) + cy(t) = 0 (0.1)

where a, b, c ∈ R (and a 6= 0). If we plug in y(t) = ert into this equation we get:

ert
Ä

ar2 + br + c
ä

= 0 =⇒ ar2 + br + c = 0

This means that y(t) = ert is a solution of (0.1) as long as ar2+br+c = 0. The characteristic equation
ar2 + br + c = 0 has solutions:

r =
−b±

√
b2 − 4ac

2a
=

−b±
√
d

2a

We analyze three different cases in which the roots of the equation fall. In each case, the general
solution to (0.1) is a linear combination of two linearly independent solutions. This must be the case,
because the vector space of solutions to (0.1) has dimension two.

• (A) The equation ar2+br+c = 0 has two distinct roots r1, r2. This occurs when the discriminant
d = b2 − 4ac > 0. This means that y1(t) = er1t and y2(t) = er2t are both linearly independent
solutions, since r1 6= r2. Then the general solution to (0.1) is:

y(t) = C1e
r1t + C2e

r2t

An example is y′′+5y′+6y = 0. Then the characteristic equation is r2+5r+6 = (r+2)(r+3) = 0
and has roots r1 = −2, r2 = −3. Thus, the general solution is y(t) = C1e

−2t + C2e
−3t.

• (B) The equation ar2 + br + c = 0 has a repeated root when b2 − 4ac = 0. This root r = − b
2a .

One solution is given by y1(t) = ert. For the second solution, we use the variation of parameters
idea. We set y2(t) = v(t)ert. We like to find a function v(t) such that L(y2(t)) = 0. We get:

y′2(t) = v′ert + rvert

y′′2(t) = v′′ert + rv′ert + r2vert + rv′ert = v′′ert + 2rv′ert + r2vert
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Plugging this into ay′′2(t) + by′2(t) + cy2(t) = 0, we get:

av′′ert + 2arv′ert + ar2vert + bv′ert + brvert + cvert

= av′′ert + v′ert [2ar + b] + vert
î

ar2 + br + c
ó

= 0

Notice that ar2 + br + c = 0 and since r = − b
2a , we get 2ar + b = −b + b = 0. Hence, we have

that:
av′′ert = 0 =⇒ v′′(t) = 0 =⇒ v(t) = t+ C

For simplicity, we can take C = 0, to get v(t) = t. Hence, the general solution to (0.1) in the
case of repeated root is:

y(t) = C1e
rt + C2te

rt

As an example, let y′′ − 4y′ + 4y = 0. Then r2 − 4r + 4 = (r − 2)2 = 0 =⇒ r1 = r2 = r = 2.
Thus, the general solution is y(t) = C1e

2t + C2te
2t. Notice that if initial conditions such as

y(0) = 1, y′(0) = −1 are given, we must use the product rule when differentiating y(t).

• (C) The equation ar2 + br + c = 0 has complex conjugate roots when b2 − 4ac < 0. If we set
d = b2 − 4ac the roots are given by:

r =
−b±

√
b2 − 4ac

2a
=

−b±
√
d

2a
=

−b±
√
−1

√
−d

2a
= − b

2a
± i

√
−d

2a
= α± iβ

Then the general solution to (0.1) is:

y(t) = C1e
αt cos(βt) + C2e

αt sin(βt) = eαt (C1 cos(βt) + C2 sin(βt))

We will make use of Euler’s identity:

eiθ = cos(θ) + i sin(θ)

The complex valued solution using r = α+ iβ is:

ycomp(t) = ert = eαt+iβt = eαteiβt = eαt [cos(βt) + i sin(βt)]

Notice that since L[ycomp(t)] = 0, it follows that if we extract the real and imaginary parts of
ycomp(t) then L[Re[ycomp(t)]] = 0 = L[Im[ycomp(t)]] (that is, both Re[ycomp(t)] = eαt cos(βt)
and Im[ycomp(t)] = eαt sin(βt) are real valued linearly indepedent solutions to (0.1)). Hence, the
general solution in the case of complex conjugate roots is:

y(t) = C1e
αt cos(βt) + C2e

αt sin(βt)

with α = − b
2a and β =

√
−d
2a . Notice that when α < 0 in this case, limt→∞ y(t) = 0. This

happens when both a and b have the same sign.

As an example, consider y′′ + 2y′ + 4y = 0. Then the corresponding characteristic equation is

r2 + 2r + 4 = 0. Then r1, r2 = −2±
√
4−16

2 = −1± i
√
12
2 = −1± i

√
3 since

√
12 =

√
4× 3 = 2

√
3.

The general solution is thus given by:

y(t) = C1e
−t cos(

√
3t) + C2e

−t sin(
√
3t)

For more examples, see: http://tutorial.math.lamar.edu/Classes/DE/IntroSecondOrder.aspx.
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1 Method of Undetermined Coefficients

Textbook: Section 4.4

The solution to the non-homogeneous equation

L(y) = ay′′(t) + by′(t) + cy(t) = f(t) (1.1)

for some nonzero f(t) is given as a sum of the solution yh to the corresponding homogeneous equation
L(yh) = 0 (given by ay′′(t) + by′(t) + cy(t) = 0) and a particular solution yp which solves the non-
homogenenous L(yp) = f(t) (i.e. the general solution y(t) = yh(t) + yp(t)). To find the homogeneous
equation solution, we simply refer to the above three cases. For the particular solution, we can use
either the method of undetermined coefficients of the method of variation of parameters (the later
method was not covered during this term).

For the method of undetermined coefficients, we can choose a trial function yp(t) involving some
undetermined constants based on f(t). If for example f(t) = sin(3t) we will use yp(t) = A cos(3t) +
B sin(3t) for the particular solution guess. We then plug in into L(yp) = f(t) to find the constants
A and B which work. Note that for trigonometric functions we must include both cos and sin in the
particular solution. If f(t) is a product of two functions, for example f(t) = t cos(2t) then we would
use as our particular solution candidate, yp(t) = (A + Bt)(C cos(2t) +D sin(2t)) since t corresponds
to a first degree polynomial.

However, care must be taken if the solution to the homogeneous equation yh(t) is found to contain
terms which are linearly dependent with terms in the proposed particular solution yp(t). In that case,
we must multiply the proposed solution yp(t) by factor t to some power. Notice that if we are dealing
with an equation in terms of independent variable x then we replace the t in this discussion by x.
The power is the minimum power of t such that the new resulting particular solution has no linearly
dependent terms with terms of yh(t). For second order linear constant coefficient equations, it is always
the case that yh(t) is a linear combination of two linearly indepedent solutions. For example, consider
the equation y′′ − 2y′ + y = 3et. The corresponding homogeneous equation is y′′h − 2y′h + yh = 0. The
corresponding characteristic equation is r2 − 2r + 1 = 0 = (r − 1)2 yielding the root of multiplicity 2,
r = 1. So that yh(t) = C1e

t+C2te
t. Based on f(t) = 3et we set ỹp(t) = Aet but this corresponds to the

term C1e
t in the homogeneous solution and will not work (try plugging this in and see). Then, we try

instead ỹp(t) = t(Aet) = Atet but this is linearly dependent with C2te
t in the homogeneous solution.

So we must take yp(t) = t2(Aet) = At2et for the particular solution and plug into L(yp) = f(t). We
get:

y′p(t) = 2Atet +At2et and y′′p(t) = 2Aet + 2Atet + 2Atet +At2et

Upon plugging into y′′p − 2y′p + yp = 3et, we get:

(2Aet + 4Atet +At2et)− 2(2Atet +At2et) +At2et = 3et =⇒ 2Aet = 3et

Thus, A = 3
2 so that yp(t) =

3
2 t

2et and y(t) = yh(t) + yp(t) = C1e
t +C2te

t + 3
2 t

2et. See attachment for
more examples.
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References with examples:
http://tutorial.math.lamar.edu/Classes/DE/UndeterminedCoefficients.aspx,

2 Simple Harmonic Oscillator

Textbook: Section 4.2 - 4.6

Figure 1: SHM setup: spring constant k, damping coefficient b and possible external force F . Motion
is one dimensional along x.

SHM offers a very good physical example for second order differential equations. The net force on
the block is equal to its mass times its acceleration, giving:

mx′′ = −kx− bx′ + F (t)

Notice that both the spring and damping oppose the motion of the block, but the spring force (by
Hooke’s law) is dependent on the displacement of the block (x) while the damping force is proportional
to the velocity of the block (x′, think of running in water). The initial conditions are x(0) = x0
(displacement to the left or right of equilibrium position x = 0) and x′(0) = v0 (push to left or right).

Notice that when F = 0 (unforced case), the differential equation is mx′′ + bx′ + kx = 0 and is
simply a constant coefficient second order homogeneous equation we analyzed previously. However,
now we have the restrictions: m > 0, k > 0, b ≥ 0. The corresponding characteristic equation is

mr2+br+k = 0 which has the solutions r = −b±
√
b2−4mk
2m = −b±

√
d

2m and so the behavior of the solution
depends on the quantity b2 − 4mk. Here is a short overview of the different cases depending on the
damping constant b (for a fixed mass and spring):

• No damping (b = 0). In this case:

r = ±
√
−4mk

2m
= ±2i

√
m
√
k

2m
= ±i

 

k

m

The solution is:

x(t) = C1 cos(w0t) + C2 sin(w0t) with w0 =

 

k

m

known as the natural frequency. Notice that this can be written also as x(t) = A cos(w0t − γ)
for a constant amplitude A and phase shift γ. The behavior is oscillatory for all time, with the
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amplitude of oscillations bounded as |x(t)| ≤ |A| for all time. Said in plan language: the block
moves back and forth passing the equilibrium position (x = 0) infinitely many times.

• Underdamping (b2 − 4mk < 0). When b is small then b2 − 4mk will be negative since m, k > 0.

In this case, r = −b
2m ± i

√
4mk−b2

2m = α± iβ with α = − b
2m and β =

√
−d
2m . The solution is:

x(t) = e−
b

2m
t [C1 cos(βt) + C2 sin(βt)] = De−

b

2m
t cos(βt− γ)

Notice here that the behavior is oscillatory, but as − b
2m < 0, the amplitude of oscillations

decreases (goes to zero) with increasing time.

• Critical damping (b2 − 4mk = 0). In this case, r = −b
2m is a single root of the quadratic

characteristic equation. So we have the solution:

x(t) = C1e
− b

2m
t + C2te

− b

2m
t

The behavior is clearly not oscillatory and the block will return to the equilibrium position in
the shortest amount of time. (Formally x(t) → 0 as t → ∞, but x(t) gets very close to zero
very quickly). However, in doing so, the block can cross the t-axis (that is, pass through the
equilibrium point x = 0) at most once.

• Overdamping (b2−4mk > 0). In this case, both roots of the characteristic equation are real and
negative:

r1 =
−b−

√
d

2m
and r2 =

−b+
√
d

2m

Notice that r1, r2 < 0, since
√
d =

√
b2 − 4mk <

√
b2 = b. The solution in this case is:

x(t) = C1e
r1t + C2e

r2t

Behavior is similar to the critically damped case. There is no oscillation and the block will
return quickly to equilibrium position (formally this takes place as t → ∞ but it gets very close
to zero quickly), but not as quickly as in the critically damped case (think of a lot of friction
preventing the block from returning to the equilibrium position quickly). The block can also
cross the equilibrium at most once (you can find the single possible crossing time by setting
x(t) = 0 and solving for t).

Next, we discuss the forced case when F (t) 6= 0. The function F (t) we will consider takes the
form F0 cos(wt) where F0 is some constant and w is some driving frequency. That is, in this case, the
amplitude of the forcing is bounded for all time as |F0 cos(wt)| < |F0| for all t. We will consider two
cases in this setup: the undamped case b = 0 and the damped case b > 0:

• Forced, undamped case (F (t) 6= 0, b = 0). In this case, the equation is mx′′ + kx = F0 cos(wt).

The intrinsic (or so called natural) frequency of the system is given by w0 =
»

k
m

as before. That’s
because the corresponding homogeneous equation mx′′h + kxh = 0 has characteristic equation

mr2 + k = 0 =⇒ r = ±i
»

k
m

so that xh(t) = C1 cos(w0t) + C2 sin(w0t). When w0 6= w, we
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will propose the particular solution xp(t) = A cos(wt) + B sin(wt). In this case, then the whole
solution x(t) = xh(t) + xp(t) will be bounded for all time. The behavior of the solution will be
oscillatory and the sum of two oscillations given by some combination of cos(w0t) and cos(wt).

When w0 = w (the natural frequency equals the forcing frequency), we will have the resonant
case where the corresponding homogeneous equation solution (the solution to mx′′h + kxh = 0)
has terms linearly dependent with the particular solution we propose given f(t) = F0 cos(wt).
In this case, we need to choose xp(t) = t[C1 cos(w0t) + C2 sin(w0t)] which when evaluated will
result in a general solution x(t) whose magnitude |x(t)| goes to ∞ as t → ∞. The increasing
amplitude of the resulting oscillations will cause the mechanical system to break. This case is
known as resonant behavior.

• Forced, damped case (F (t) 6= 0, b > 0). In this case, the equation is mx′′+bx′+kx = F0 cos(wt).

The homogeneous equation mx′′h+bx′h+kxh = 0 has roots r = −b±
√
b2−4mk
2m . Note that no matter

what the value of b2 − 4mk, when b > 0, limt→∞ xh(t) = 0. That is, the homogeneous equation
solution tends to zero. For this reason, the behavior of the system for large time depends entirely
on the particular solution (known also in this case as the steady state solution). For the particular
solution we can use xp(t) = A cos(wt) +B sin(wt). If we insert this and simplify, we can get the
constants quoted in section 4.6 of the textbooks. Most importantly, the particular solution can
then be written as xp(t) = Ā cos(wt−γ) where Ā =

√
A2 +B2 and Ā = F0√

m2(w2

0
−w2)2+(bw)2

≤ F0

bw
.

Notice that the upper bound of the amplitude Ā is achieved precisely when w0 = w, but in the
damped case, the amplitude does not become unbounded with increasing time. However, if
the damping level is low (b is small), then when the forcing frequency is equal to the intrinsic
frequency, the amplitude of oscillations may indeed be very large and the mechanical system can
still break. On the other hand, if the damping is large enough, then even when w0 = w, the
amplitude spike will be modest.

References:
http://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-

ii-second-order-constant-coefficient-linear-equations/, http://tutorial.math.lamar.edu/
Classes/DE/Vibrations.aspx

3 Laplace Transforms

Textbook: Chapter 8.1,8.2

See attachment and:
http://tutorial.math.lamar.edu/Classes/DE/LaplaceIntro.aspx
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