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Textbook: Section 4.1 - 4.3

The general homogeneous second order ODE with constant coefficients is:
L(y) = ay”(t) + by'(t) + cy(t) = 0 (0.1)
where a,b,c € R (and a # 0). If we plug in y(¢) = €' into this equation we get:
ert<ar2—i—br—i—c> =0 = ar’+br+c=0

This means that y(t) = " is a solution of (0.1) as long as ar?+br+c = 0. The characteristic equation
ar? + br + ¢ = 0 has solutions:

bt Vb2 —dac  —b+Vd
N 2a N 2a
We analyze three different cases in which the roots of the equation fall. In each case, the general

solution to (0.1) is a linear combination of two linearly independent solutions. This must be the case,
because the vector space of solutions to (0.1) has dimension two.

r

e (A) The equation ar?+4br+c = 0 has two distinct roots r1,72. This occurs when the discriminant
d = b* — 4ac > 0. This means that y;(t) = e™! and ya(t) = e™! are both linearly independent
solutions, since 71 # r2. Then the general solution to (0.1) is:

y(t) = Cre™t + Cae™!

An example is y” +5y'+6y = 0. Then the characteristic equation is r24+5r+6 = (r+2)(r+3) =0
and has roots r; = —2,79 = —3. Thus, the general solution is y(t) = Cre ™2 4+ Coe™ 3.

e (B) The equation ar? + br + ¢ = 0 has a repeated root when b?> — 4ac = 0. This root r = —%.

One solution is given by y;(t) = e™. For the second solution, we use the variation of parameters
idea. We set y2(t) = v(t)e". We like to find a function v(t) such that L(y2(t)) = 0. We get:

t

yh(t) = e +rve”
yg(w _ ,U//ert + T’U’ert + T2U€Tt + T‘Ulert — ,U//ert + 27‘1/6” + 7“21)6“



Plugging this into ays () + bys(t) + cy2(t) = 0, we get:

/i ! !
av”e™t +  2arv'e™ + arfve™ + bv'e™t + brve™ + cve

= av’e" + e [2ar + b] + ve™ [arQ +br + c] =0

Notice that ar? 4+ br + ¢ = 0 and since r = —%, we get 2ar +b = —b+ b = 0. Hence, we have
that:

aet =0 = V'(t)=0 = v(t)=t+C
For simplicity, we can take C' = 0, to get v(t) = t. Hence, the general solution to (0.1) in the

case of repeated root is:

y(t) = Cre™ + Oyte™
As an example, let ¢ — 4y’ +4y =0. Then 1> —4dr +4 = (r—2)2 =0 = r  =ro =r = 2.
Thus, the general solution is y(t) = C1e* + Cote?’. Notice that if initial conditions such as
y(0) = 1, y/(0) = —1 are given, we must use the product rule when differentiating y(t).

e (C) The equation ar? + br + ¢ = 0 has complex conjugate roots when b> — dac < 0. If we set
d = b? — 4ac the roots are given by:

_ bEVP —dac  —bEVd _ cbEVoIV=d b Vd

2a 2a 2a 2a 2a
Then the general solution to (0.1) is:

y(t) = Cre™ cos(Bt) + Coe™ sin(Bt) = e (Cy cos(Bt) + Cysin(Bt))

r =a+if

We will make use of Euler’s identity:
e = cos(f) + isin()
The complex valued solution using r = a + ¢0 is:
Yeomp(t) = e = O =l iBt — 0t [cog(Bt) + i sin(St)]

Notice that since L[ycomp(t)] = 0, it follows that if we extract the real and imaginary parts of
Yeomp(t) then L[Re[Ycomp(t)]] = 0 = L{IMm[ycomp(t)]] (that is, both Re[ycomp(t)] = e cos(St)
and Im[ycomp(t)] = €* sin(ft) are real valued linearly indepedent solutions to (0.1)). Hence, the
general solution in the case of complex conjugate roots is:

y(t) = Cre® cos(Bt) + Cae™ sin(Bt)

with o = —% and 8 = %. Notice that when « < 0 in this case, lim; o, y(t) = 0. This

happens when both a and b have the same sign.

As an example, consider y” + 2y’ + 4y = 0. Then the corresponding characteristic equation is
r2 4 2r +4=0. Then ri,ry = “25A718 — 1 4 ¥I2 — 1 4 /3 since v12 = V4 x 3 = 2V/3.
The general solution is thus given by:

y(t) = Cre " cos(V/3t) + Che~tsin(v/3t)

For more examples, see: http://tutorial.math.lamar.edu/Classes/DE/IntroSecondOrder.aspx.


http://tutorial.math.lamar.edu/Classes/DE/IntroSecondOrder.aspx

1 Method of Undetermined Coefficients

Textbook: Section 4.4

The solution to the non-homogeneous equation

L(y) = ay"(t) + by'(t) + cy(t) = f(t) (1.1)

for some nonzero f(t) is given as a sum of the solution y, to the corresponding homogeneous equation
L(yn) = 0 (given by ay”(t) + by'(t) + cy(t) = 0) and a particular solution y, which solves the non-
homogenenous L(y,) = f(t) (i.e. the general solution y(t) = yx(t) + yp(t)). To find the homogeneous
equation solution, we simply refer to the above three cases. For the particular solution, we can use
either the method of undetermined coefficients of the method of variation of parameters (the later
method was not covered during this term).

For the method of undetermined coefficients, we can choose a trial function y,(t) involving some
undetermined constants based on f(t). If for example f(t) = sin(3t) we will use y,(t) = Acos(3t) +
Bsin(3t) for the particular solution guess. We then plug in into L(y,) = f(¢) to find the constants
A and B which work. Note that for trigonometric functions we must include both cos and sin in the
particular solution. If f(¢) is a product of two functions, for example f(t) = ¢ cos(2t) then we would
use as our particular solution candidate, y,(t) = (A + Bt)(C cos(2t) + D sin(2t)) since t corresponds
to a first degree polynomial.

However, care must be taken if the solution to the homogeneous equation yp,(¢) is found to contain
terms which are linearly dependent with terms in the proposed particular solution y,(¢). In that case,
we must multiply the proposed solution y,(t) by factor ¢ to some power. Notice that if we are dealing
with an equation in terms of independent variable x then we replace the ¢ in this discussion by x.
The power is the minimum power of ¢ such that the new resulting particular solution has no linearly
dependent terms with terms of yp(t). For second order linear constant coefficient equations, it is always
the case that y,(t) is a linear combination of two linearly indepedent solutions. For example, consider
the equation y” — 2y’ + y = 3e'. The corresponding homogeneous equation is y) — 2y} + yn, = 0. The
corresponding characteristic equation is 72 — 2r +1 = 0 = (r — 1)? yielding the root of multiplicity 2,
r = 1. So that yp(t) = Cre' +Cate. Based on f(t) = 3e’ we set ,(t) = Ae but this corresponds to the
term Cfe! in the homogeneous solution and will not work (try plugging this in and see). Then, we try
instead g, (t) = t(Ae') = Ate' but this is linearly dependent with Cate’ in the homogeneous solution.
So we must take y,(t) = t?(Ae’) = At?e! for the particular solution and plug into L(y,) = f(t). We
get:

yn(t) = 2Ate" + At’e’  and y)(t) = 2Ae’ + 2Ate’ + 2Ate’ + At’€’

Upon plugging into y, — 2y, + v, = 3¢, we get:
(24¢" + 4Ate! + At?el) — 2(2Ate! + At?e!) + At?e! = 3! = 2A4e! = 3¢

Thus, A = 2 so that y,(t) = 3t%¢’ and y(t) = yu(t) + yp(t) = Cre’ + Cote’ + 3t%e’. See attachment for
more examples.



References with examples:
http://tutorial.math.lamar.edu/Classes/DE/UndeterminedCoefficients.aspx,

2 Simple Harmonic Oscillator

Textbook: Section 4.2 - 4.6

Figure 1: SHM setup: spring constant k, damping coefficient b and possible external force F'. Motion
is one dimensional along x.

SHM offers a very good physical example for second order differential equations. The net force on
the block is equal to its mass times its acceleration, giving:

ma” = —kx — bx’ + F(t)

Notice that both the spring and damping oppose the motion of the block, but the spring force (by
Hooke’s law) is dependent on the displacement of the block (x) while the damping force is proportional
to the velocity of the block (', think of running in water). The initial conditions are x(0) = zg
(displacement to the left or right of equilibrium position z = 0) and z’(0) = vy (push to left or right).

Notice that when F = 0 (unforced case), the differential equation is ma” + bx’ + kx = 0 and is
simply a constant coefficient second order homogeneous equation we analyzed previously. However,
now we have the restrictions: m > 0,k > 0,b > 0. The corresponding characteristic equation is
mr?+br+k = 0 which has the solutions r = =2+ VQZ’;_"Lmk = —ijT:n\/& and so the behavior of the solution
depends on the quantity > — 4mk. Here is a short overview of the different cases depending on the

damping constant b (for a fixed mass and spring):

e No damping (b = 0). In this case:

r==4

V—dmk _ | 2i/mvE _ "
S 2m

k
2m m

The solution is:

k
x(t) = Cy cos(wot) + Casin(wpt) with wp = p—

known as the natural frequency. Notice that this can be written also as x(t) = A cos(wot — )
for a constant amplitude A and phase shift «v. The behavior is oscillatory for all time, with the


http://tutorial.math.lamar.edu/Classes/DE/UndeterminedCoefficients.aspx

amplitude of oscillations bounded as |z(t)| < |A| for all time. Said in plan language: the block
moves back and forth passing the equilibrium position (x = 0) infinitely many times.

e Underdamping (b2 — 4mk < 0). When b is small then b? — 4mk will be negative since m, k > 0.
In this case, r = % 4 YAmb=b? ) 4 18 with a = —% and 8 = %. The solution is:

2m

x(t) = et [Cy cos(Bt) + Casin(ft)] = De~ 2t cos(ft — )

Notice here that the behavior is oscillatory, but as —im < 0, the amplitude of oscillations

2
decreases (goes to zero) with increasing time.

e Critical damping (b*> — 4mk = 0). In this case, r = _72 is a single root of the quadratic

2
characteristic equation. So we have the solution:
_by _ by
z(t) = Cre 2m" 4 Cyte” 2m

The behavior is clearly not oscillatory and the block will return to the equilibrium position in
the shortest amount of time. (Formally z(t) — 0 as t — oo, but z(t) gets very close to zero
very quickly). However, in doing so, the block can cross the t-axis (that is, pass through the
equilibrium point = 0) at most once.

e Overdamping (b —4mk > 0). In this case, both roots of the characteristic equation are real and

negative:
—b—+/d —b++d
rn=————— and rp=—"—
2m 2m

Notice that 71, ry < 0, since Vd = Vb2 — dmk < Vb2 = b. The solution in this case is:
x(t) = Clerlt + CQGTQt

Behavior is similar to the critically damped case. There is no oscillation and the block will
return quickly to equilibrium position (formally this takes place as t — oo but it gets very close
to zero quickly), but not as quickly as in the critically damped case (think of a lot of friction
preventing the block from returning to the equilibrium position quickly). The block can also
cross the equilibrium at most once (you can find the single possible crossing time by setting
x(t) = 0 and solving for ¢).

Next, we discuss the forced case when F(t) # 0. The function F(t) we will consider takes the
form Fy cos(wt) where Fy is some constant and w is some driving frequency. That is, in this case, the
amplitude of the forcing is bounded for all time as |Fy cos(wt)| < |Fp| for all t. We will consider two
cases in this setup: the undamped case b = 0 and the damped case b > O:

e Forced, undamped case (F(t) # 0, b = 0). In this case, the equation is ma” + kax = Fy cos(wt).
The intrinsic (or so called natural) frequency of the system is given by wy = 4/ % as before. That’s
because the corresponding homogeneous equation ma} + kxp = 0 has characteristic equation

mrl+k=0 = r= j:i\/% so that z5(t) = C1 cos(wot) + Coysin(wpt). When wy # w, we



will propose the particular solution z,(t) = A cos(wt) + Bsin(wt). In this case, then the whole
solution z(t) = x(t) + z,(t) will be bounded for all time. The behavior of the solution will be
oscillatory and the sum of two oscillations given by some combination of cos(wpt) and cos(wt).

When wy = w (the natural frequency equals the forcing frequency), we will have the resonant
case where the corresponding homogeneous equation solution (the solution to mx) + kxj = 0)
has terms linearly dependent with the particular solution we propose given f(t) = Fycos(wt).
In this case, we need to choose x,(t) = t[Cy cos(wot) + Casin(wpt)] which when evaluated will
result in a general solution x(t) whose magnitude |x(t)| goes to co as ¢ — co. The increasing
amplitude of the resulting oscillations will cause the mechanical system to break. This case is
known as resonant behavior.

e Forced, damped case (F(t) # 0, b > 0). In this case, the equation is ma” +bx’ + kx = Fy cos(wt).
The homogeneous equation mz} + bz}, +kxp, = 0 has roots r = =bivbi—dmk W. Note that no matter
what the value of b> — 4mk, when b > 0, limy oo 25 (t) = 0. That is, the homogeneous equation
solution tends to zero. For this reason, the behavior of the system for large time depends entirely
on the particular solution (known also in this case as the steady state solution). For the particular
solution we can use x,(t) = Acos(wt) + Bsin(wt). If we insert this and simplify, we can get the

constants quoted in section 4.6 of the textbooks. Most importantly, the particular solution can

i —A _ A — 2 2 - Fo Iy
then be written as z,(t) = A cos(wt—v) where A = /A2 + B2 and A N O <.

Notice that the upper bound of the amplitude A is achieved precisely when wg = w, but in the
damped case, the amplitude does not become unbounded with increasing time. However, if
the damping level is low (b is small), then when the forcing frequency is equal to the intrinsic
frequency, the amplitude of oscillations may indeed be very large and the mechanical system can
still break. On the other hand, if the damping is large enough, then even when wy = w, the
amplitude spike will be modest.

References:
http://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-
ii-second-order-constant-coefficient-linear-equations/, http://tutorial.math.lamar.edu/
Classes/DE/Vibrations.aspx

3 Laplace Transforms

Textbook: Chapter 8.1,8.2

See attachment and:
http://tutorial.math.lamar.edu/Classes/DE/Laplacelntro.aspx


http://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-ii-second-order-constant-coefficient-linear-equations/
http://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-ii-second-order-constant-coefficient-linear-equations/
http://tutorial.math.lamar.edu/Classes/DE/Vibrations.aspx
http://tutorial.math.lamar.edu/Classes/DE/Vibrations.aspx
http://tutorial.math.lamar.edu/Classes/DE/LaplaceIntro.aspx
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