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1 Eigenvalues/Eigenvectors

Textbook: Section 5.3

Any linear operator T which maps vectors from R
m to Rn can be represented by a matrix A ∈ R

m×n

such that for w ∈ R
m, we have z = T (w) = Aw ∈ R

n.

For square matrices A ∈ R
n×n, some special vectors v will be such that Av is a scalar multiple

of v (the scalar multiple being λv for some λ ∈ R). We say that nonzero vectors v and scalars λ

satisfying Av = λv form an eigenvector/eigenvalue pair. Notice that Av = λv =⇒ (A − λI)v = 0.
The system of equations (A − λI)v = 0 has nonzero solutions only when (A − λI) is not invertible
and this happens when det(A− λI) = 0. Hence, λ is an eigenvalue of A if and only if it satisfies the
polynomial equation:

det(A− λI) = cnλ
n + cn−1λ

n−1 + . . . c1λ+ c0 = 0

Notice that the above expansion implies property (1) below. For if, λ = 0 is an eigenvalue of A

then det(A) = c0 = 0 and so A is not invertible. Another property concern powers of the matrix A.
Suppose Av = λv (that is, A has eigenvector v and eigenvalue λ). Then: A2v = A(Av) = A(λv) =
λ(Av) = λ(λv) = λ2v. By induction, we arrive at property (2) below. Also notice that when A−1 does
exist we have A−1(A − λI)v = 0 = (I − λA−1)v = 0 = (A−1 − 1

λ
I)v = 0. This leads to property (3)

below. A and AT satisfy the same characteristic equation, hence have the same eigenvalues. That’s
because det(AT − λI) = det(AT − λIT ) = det((A− λI)T ) = det(A− λI). This implies property (4).
Eigenvalues can either be simple or repeated, depending on the roots of the characteristic equation
det(A− λI) = 0. If an eigenvalue is a repeated root of multiplicity M , then property (5) applies. So
for example, if A is 3 × 3 and has eigenvalue λ of multiplicity 3, then there may just be one linearly
independent eigenvector corresponding to this eigenvalue or up to 3 depending on A. For complex
eigenvalues, they and their corresponding eigenvectors always occur in conjugate pairs, as stated in
property (6).

• (1) A square matrix A is invertible (when det(A) 6= 0) if and only if λ = 0 is NOT an eigenvalue
of A.

• (2) For k > 0, if A has eigenvector v and eigenvalue λ, then Ak has eigenvalue λk and same
corresponding eigenvector v. That is, Akv = λkv.
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• (3) When A−1 exists (A does not contain a zero eigenvalue) then if Av = λv then A−1v = 1
λ
v

(that is, 1
λ
is an eigenvalue of A with the same eigenvector v).

• (4) A and AT have the same eigenvalues, but usually different eigenvectors.

• (5) If matrix A has eigenvalue λ with multiplicity M then there exists between 1 and M linearly
independent eigenvectors corresponding to this eigenvalue.

• (6) If matrix A has complex eigenvalue λ1 = α+ iβ then it also has the eigenvalue λ2 = α− iβ

which is the complex conjugate of λ1. If v1 is an eigenvector corresponding to λ1 then v2 is an
eigenvector corresponding to λ2 where v2 is complex conjugate of v1.

For example, consider the matrix:

A =







0 0 −2
1 2 1
1 0 3







It follows that:

det(A− λI) =

∣

∣

∣

∣

∣

∣

∣







−λ 0 −2
1 2− λ 1
1 0 3− λ







∣

∣

∣

∣

∣

∣

∣

= (2− λ)

∣

∣

∣

∣

∣

ñ

−λ −2
1 3− λ

ô

∣

∣

∣

∣

∣

= (2− λ) [(−λ)(3− λ) + 2]

= (2− λ)[λ2 − 3λ+ 2] = (2− λ)(λ− 2)(λ− 1) = 0

It follows that λ1,2 = 2 is an eigenvalue of multiplicity 2 and λ3 = 1 is a simple eigenvalue. There
can be one or two linearly independent eigenvectors corresponding to λ1,2 and there must be one

linearly independent eigenvector corresponding to λ3. We solve (A− 2I)v(1,2) = 0, where v1,2 =







v1
v2
v3






.

Omitting the last all zero column we row reduce:







−2 0 −2
1 0 1
1 0 1






⇒







1 0 1
0 0 0
0 0 0







so that v1 + v3 = 0 =⇒ v1 = −v3 and v2 can take any value. Set v2 = α and v3 = β, then v1 = −β

and so:

v1,2 =







v1
v2
v3






=







−β

α

β






= α







0
1
0






+ β







−1
0
1







Hence, in this case there are two linearly independent eigenvectors for the repeated eigenvalue λ = 2

and they are v(1) =







0
1
0






and v(2) =







−1
0
1






(or any multiple of these, for example, we can scale these to
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have unit norm). For the simple eigenvalue λ = 1, (A− I)v(3) = 0 gives:







−1 0 −2
1 1 1
1 0 2






⇒







1 1 1
1 0 2
0 0 0






⇒







1 1 1
0 −1 1
0 0 0







which gives the equations v1 + v2 + v3 = 0 and −v2 + v3 = 0 =⇒ v3 = v2. Letting v3 = α, we get
v1 = −v2 − v3 = −2α, v2 = α, v3 = α:

v(3) =







v1
v2
v3






=







−2α
α

α






= α







−2
1
1







so the third eigenvector is v(3) =







−2
1
1






.

Next, consider the matrix:

A =

ñ

0 1
−1 0

ô

=⇒ |(A− λI)| =
∣

∣

∣

∣

∣

ñ

−λ 1
−1 −λ

ô

∣

∣

∣

∣

∣

= λ2 + 1 = 0 =⇒ λ = ±i

We choose λ1 = i and compute v(1). The second eignevector is then the complex conjugate of the first.
We get (A− iI)v(1) = 0:

ñ

−i 1
−1 −i

ô ñ

v1
v2

ô

=

ñ

0
0

ô

Since det(A − λI) = 0, the rank of the above matrix is one and any one of the equations can be
used (the other is just a scalar multiple of the first and gives the same information). Thus, we get

−iv1 + v2 = 0 =⇒ v1 = 1, v2 = i so that v(1) =

ñ

1
i

ô

. This immediately implies that for λ2 = −i, the

eigenvector is v(1) =

ñ

1
−i

ô

.

Notice that an eigenspace for a given eigenvalue λ is a set given as the span (all possible linear
combinations) of the corresponding eigenvectors. The dimension of the eigenspace is simply the number
of eigenvectors corresponding to the eigenvalue, see the example below.
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Reference:
http://tutorial.math.lamar.edu/Classes/DE/LA_Eigen.aspx

2 Systems of ODEs and their solutions (Textbook: Section 6.1 - 6.3)

Systems of differential equations can be motivated by the following three spring two mass problem:

This setup is interesting because with the introduction of an external force, it can be used to
model a simple tuned mass damper. The idea is to ‘transfer’ the vibrations of one big mass (a bridge
or building) to a smaller mass so that the bigger amplitude vibrations are passed on to the smaller
mass and the bigger mass remains relatively stable, even with a force (e.g. strong wind) acting on it.
There are three springs with stiffness constants k1, k2, k3 and two blocks of masses m1 and m2. The
time dependent quantities x1(t) and x2(t) are the displacements of the masses from their equilibrium
positions. For the simplest possible setup, we assume no frictional forces so that b = 0 and also that no
external forces act on the blocks so the equations are homogeneous. The analysis is very similar with
one or both of these included. To find the equations of motion, we analyze separately the forces acting
on each mass. We may assume x1(t) and x2(t) are both to the right of the equilibrium position - that
is both blocks are pushed against the springs k1 and k2 to the right and their equilibrium position is
to their left (if they are pushed to the left or one pushed to the right and one to the left then both or
one of x1(t), x2(t) will be negative and the equations below will still hold).

• Block 1 (mass m1): When x1(t) and x2(t) are both to the right of the equilibrium position, a
force −k1x1 acts to oppose the displacement of m1 to the left. Similarly, on the right, spring k2
opposes the motion of the block and acts to the left giving component −k2x1. However, since
block 2 (mass m2) is also displaced to the right by amount x2 it causes the spring k2 to stretch
towards m2 via the force k2x2 (proportional to how much m2 is moved - in opposing the motion
of m2 the spring exerts an equal forced push on m1). Hence, the net force on block m1 is:

F1 = m1
d2x1

dt2
= −k1x1 − k2x1 + k2x2 = −(k1 + k2)x1 + k2x2
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• Block 2 (mass m2): When x1(t) and x2(t) are both to the right of the equilibrium position, a
force −k3x2 acts to oppose the displacement of the block from the right. Similarly, the spring
k2 opposes the motion of the block from the left giving component −k2x2. However, since block
1 (mass m1) is also displaced to the right by amount x1 this causes spring k2 to compress and
push m2 to the right with force k2x1 (proportional to how much m1 is moved - in opposing the
motion of m1 the spring exerts an equal forced push on m2). Hence, the net force on block m2

is:

F2 = m2
d2x2

dt2
= −k3x2 − k2x2 + k2x1 = k2x1 − (k2 + k3)x2

Notice that we can write these two differential equations for x′′1 and x′′2 as:

d2x1

dt2
=

−(k1 + k2)

m
x1 +

k2

m
x2 = ax1 + bx2

d2x2

dt2
=

k2

m
x1 +

−(k2 + k2)

m
x2 = cx1 + dx2

If we now introduce two new variables x3 = x′1 and x4 = x′2 we can rewrite the equations above as:

x′′1 = x′3 = ax1 + bx2

x′′2 = x′4 = cx1 + dx2

so that the full system of first order equations becomes:

x′1 = x3

x′2 = x4

x′3 = ax1 + bx2

x′4 = cx1 + dx2

We can rewrite this in matrix form as:










x1
x2
x3
x4











′

=











0 0 1 0
0 0 0 1
a b 0 0
c d 0 0





















x1
x2
x3
x4











⇔ ~x′(t) = A~x(t) = A











x1(t)
x2(t)
x3(t)
x4(t)











Many other physical systems can be modeled by linear differential equation systems ~x′(t) = A~x(t)
with A an n × n matrix. Note once again, that higher order systems can be reduced to first order
systems via substitution, as we did above.

To find solutions to ~x′(t) = A~x(t), we try the substitution ~x = eλt~v =⇒ ~x′ = λeλt~v to get:
λeλt~v = Aeλt~v. Rearranging we get:

eλt(A− λI)~v = ~0 =⇒ (A− λI)~v = ~0
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since eλt > 0. Thus, we have that ~x(t) = eλt~v is a solution to the system ~x′(t) = A~x(t) when λ is
an eigenvalue and ~v is a corresponding eigenvector of matrix A. At this point there are several cases,
depending on the eigenvalue and eigenvectors which A has. We will restrict our analysis to 2 × 2
systems, that is A ∈ R

2×2. The solution to the system depends on the eigenvalues and eigenvectors of
A.

• (1) A has n distinct real eigenvalues and n linearly independent eigenvectors. Then for each
pair λi, ~vi it follows that ~xi(t) = eλit~vi is a solution to the system and the general solution is a
general linear combination of all n solution vectors. In the 2× 2 case, the solution is:

~x(t) = C1e
λ1t ~v1 + C2e

λ2t ~v2

If both λ1, λ2 < 0, then all trajectories go back to the equilibrium point (0, 0) as t → ∞. This
results in a stable node. The non-straight line trajectories will be parabolas (see derivation later
in this pdf). If the eigenvalues are of different signs, the result will be a saddle point for (0, 0),
some trajectories will go to (0, 0) and others away from it. The non-straight line trajectories
will be hyperbolas in this case. If the eigenvalues are both positive, all trajectories will go away
from (0, 0) with increasing t and an unstable node will result and non-straight line trajectories
will be parabolas.

• (2) A has complex conjugate eigenvalues and complex eigenvectors. Note that if A is say 2×2 then
if one eigenvalue is complex, the other eigenvalue is just a complex conjuate of that eigenvalue
and the same relationship holds for the eigenvectors. That is, if the first eigenvalue is say
λ1 = α+ iβ then the second eigenvalue must be λ2 = α− iβ and if the first eigenvector is ~v1 then
the second eigenvector is the complex conjugate of ~v1 (replace all i by −i). However for a 3× 3
matrix, we can have for example one real eigenvalue and two complex conjugate eigenvalues,
but the complex ones always occur in conjugate pairs. Now consider a complex eigenvector pair
~v1, ~v2 = ~p ± i~q corresponding to two complex eigenvalues λ1,2 = α ± iβ. Let us take one of the
eigenvalues and eigenvectors λ1 and ~v1 and form a complex valued solution. Then:

~xcmp(t) = eλ1t~v1 = e(α+iβ)t (~p+ i~q) = eαteiβt (~p+ i~q) = eαt (cos(βt) + i sin(βt)) (~p+ i~q)

= eαt (cos(βt)~p− sin(βt)~q) + ieαt (sin(βt)~p+ cos(βt)~q)

Note that both the real (Re(~xcmp(t))) and imaginary (Im(~xcmp(t))) parts of the complex valued
solution vector ~xcmp(t) are real functions. That is ~xre(t) = eαt (cos(βt)~p− sin(βt)~q) and ~xim(t) =
eαt (sin(βt)~p+ cos(βt)~q) are real and satisfy:

~x′(t) = ~x′re(t) + i~x′im(t) = A~x(t) = A~xre(t) + iA~xim(t)

Hence, equating the real and imaginary parts, we have that:

~x′re(t) = A~xre(t) and ~x′im(t) = A~xim(t)

So that ~x′re(t) and ~x′im(t) are two real solutions to the linear ODE system corresponding to
complex conjugate eigenvalues/eigenvectors λ1,2, ~v1,2. Notice again that it doesn’t matter which
eigenvalue and eigenvector pair we use to form the complex valued solution.
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Example: Let:

~x′(t) =

ñ

−1
2 1

−1 −1
2

ô

~x(t)

One then finds that the eigenvalues are λ1,2 = −1
2 ± i and the eigenvectors are ~v1,2 =

ñ

1
±i

ô

. We

take any one of the eigenvalues and eigenvectors and extract the real and imaginary parts as two
real solutions from the complex valued solution vector:

~x(t) =

ñ

1
i

ô

e(−
1

2
+i)t =

ñ

1
i

ô

e−
t

2 (cos(t) + i sin(t)) =

[

e−
t

2 cos(t)

−e−
t

2 sin(t)

]

+ i

[

e−
t

2 sin(t)

e−
t

2 cos(t)

]

That is, the two solutions are ~xre(t) =

[

e−
t

2 cos(t)

−e−
t

2 sin(t)

]

and ~xim(t) =

[

e−
t

2 sin(t)

e−
t

2 cos(t)

]

and the general

solution is:

~x(t) = C1e
−

t

2

ñ

cos(t)
− sin(t)

ô

+ C2e
−

t

2

ñ

sin(t)
cos(t)

ô

• (3) A has repeated eigenvalues λ1 = λ2 = λ but two linearly dependent vectors for the repeated
eigenvalue. In this case we have eigenvectors ~v1 and ~v2 and the general solution is simply:

~x(t) = C1e
λt~v1 + C2e

λt~v2

In this case, x(t)
y(t) = K and the solution trajectories correspond to a star node.

• (4) A has repeated eigenvalues and for one or more of the repeated eigenvalues, there is less
linearly independent eigenvectors than the number of times the eigenvalue is repeated. Suppose
we have a 2 × 2 matrix with one real repeated eigenvalue λ but only one linearly independent
eigenvector ~v. Then one solution is ~x1(t) = eλt~v. If we try for another solution ~x(t) = teλt~v (mo-
tivated by second order constant coefficient equations case with a double root of the characteristic
equation), then for this vector to satisfy the ODE system, we have:

~x′(t) = eλt~v + λteλt~v = A(teλt~v)

which is satisfied only for ~v = 0. This, however, is inconsistent with ~v being an eigenvector.
It turn out that if we take as the second solution ~x2(t) = eλt(t~v + ~u) this works provided ~u

satisfies the linear system (A−λI)~u = ~v. To see this, simply pluging ~x2(t) into the ODE system
~x′2(t) = A~x2(t) we get:

d

dt

Ä

teλt~v + eλt~u
ä

= A
Ä

teλt~v + eλt~u
ä

=⇒ eλt~v + λteλt~v + λeλt~u = (A~v)teλt + (A~u)eλt

=⇒ (~v + λ~u) eλt + (λ~v)teλt = (A~u)eλt + (A~v)teλt

This imples that ~x2 is a solution if the following hold:

A~v = λ~v and ~v + λ~u = A~u =⇒ (A− λI)~u = ~v
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The first condition is simply the eigenvector condition on ~v and the second condition is (A −
λI)~u = ~v which ~u has to satisfy. Note that ~u is known as a generalized eigenvector. That’s
because (A− λI)2~u = (A− λI)~v = 0. The general solution is then given by:

~x(t) = C1~x1(t) + C2~x2(t) = C1e
λt~v + C2e

λt(t~v + ~u)

See the handwritten notes at the end of the pdf for examples of this case.

References:

• Paul’s notes: http://tutorial.math.lamar.edu/Classes/DE/SystemsIntro.aspx

• Diffeq for Engineers book (chapter 3): http://www.jirka.org/diffyqs/

3 Stability of linear ODE systems (Textbook: section 6.4)

As an illustration condsider the single ODE x′(t) = αx(t) which models exponential growth or decay
for t ≥ 0. The solution, by separation of variables, is x(t) = Ceαt. An equilibrium solution to the
equation is x(t) = 0 corresponding to the initial condition x(0) = 0. That is, if at time t = 0, we have
x(0) = 0 and follow the above model, the x(t) will remain zero for all time t. However, if we perturb
the initial condition slightly, starting off at say x(0) = 0.001, the long term behavior of the solution
will depend on α. For α > 0, x(t) → ∞ as t → ∞ while for α < 0, x(t) → 0 as t → ∞. We say that
for α < 0, the zero equilibrium solution x(t) = 0 is asymptotically stable (because solutions which
start near x(0) = 0 will remain nearby as t → ∞. On the other hand, for α > 0, the solution x(t) = 0
is asymptotically unstable. If we start just a bit off x(0) = 0 (say at x(0) = 0.001), then we will go
very far away from x(t) = 0 as t gets large.

For an equation such as y′(t) = y2 − y − 6, there are multiple equilibrium solutions given by
y2 − y − 6 = (y − 3)(y + 2) = 0 =⇒ y = 3, y = −2. A sketch of the integral curves (basically, a
few solution curves corresponding to different initial conditions of the ODE) gives the following plot:
This can be sketeched by hand, simply by considering the signs of the tangent vectors to the solution

of the ODE (that is, the values of y′(t) given by (y − 3)(y + 2) for different values of y). Notice that
since the ODE is autonomous (no dependence on t), the slope values depend just on y.
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We can talk also about stability of equilibrium solutions of linear ODE systems. Consider the 2×2
constant coefficient linear ODE system:

ñ

x′(t)
y′(t)

ô

=

ñ

a b

c d

ô ñ

x(t)
y(t)

ô

which we write compactly as ~x′(t) = A~x(t). Clearly,

ñ

x′(t)
y′(t)

ô

=

ñ

0
0

ô

when

ñ

x(t)
y(t)

ô

=

ñ

0
0

ô

so we call

ñ

0
0

ô

an equilibrium solution (or equilibrium point) of the ODE system. We consider the initial condition

(at t = 0), ~x(0) =

ñ

ǫ1
ǫ2

ô

for small ǫ1, ǫ2 and want to know what happens to the vector solution of the

ODE as t → ∞ (asymptotic stability analysis). That is, we would like to classify the equilibrium
point of the ODE system, as we did with single differential equations above. The behavior clearly
depends on the solution of the system, which is governed by it’s eigenvalues and eigenvectors. For
2× 2 systems the eigenvalues are given by |A− λI| = 0 = (a− λ)(d− λ)− bc = (λ− a)(λ− d)− bc =
λ2 − (a + d)λ + (ad − bc) = 0. Note that the sum of the diagonal elements a + d is the trace of the
matrix Tr(A) and ad− bc = |A|. Hence, the eigenvalues of the matrix A can be expressed in terms of
it’s trace and determinant. The formula below is valid only for the 2× 2 case:

λ2 − Tr(A) + |A| = 0 =⇒ λ1,2 =
Tr(A)±

»

Tr2(A)− 4|A|
2

Based on the eigenvalues λ1, λ2 we can conclude the following (see handwritten notes at end for more
detailed analysis):

• Real and distinct positive eigenvalues, λ1 6= λ2, λ1 > 0, λ2 > 0: Both solutions have a positive
exponential term eλ1t and eλ2t which go to ∞ as t → ∞. Hence, this situation corresponds to an
unstable source. Solution trajectories starting near the origin, go futher and further away from
the origin as time increased.

• Real and distinct negative eigenvalues λ1 6= λ2, λ1 < 0, λ2 < 0. This is the opposite of the
previous case and the trajectories form a stable sink. Solution trajectories starting near the
origin stay near the origin and eventually go to the origin as t → ∞.

• Real eigenvalues of different signs, λ1 6= λ2, λ1 < 0, λ2 > 0. If the eigenvalues have opposite
signs, some solutions will approach the origin and others will go away from the origin as t → ∞.
The trajectories form an unstable saddle.

• Complex eigenvalues λ1 = α+ iβ, λ2 = α− iβ. These always occur in complex conjugate pairs.
The behavior depends on the sign of α as that corresponds to the term eαt in the solution. If
α = 0, then the trajectories will be circular around the origin with constant radius for all t.
These are referred to as stable centers. On the other hand if α < 0, the trajectories are stable
spirals and if α > 0 they are unstable spirals, whose radius increases with time.

• Repeated eigenvalues λ1 = λ2 = λ. Here the situation depends on the number of linearly
independent eigenvectors associated with λ. There can be either one or two. For the 2× 2 case,
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2 is only possible if A = λI, that is A is a multiple of the diagonal identity matrix. In that
case (A− λI) = 0 and any vector in R

2 is an eigenvector, since for any ~v ∈ R
2, (A− λI)~v = 0.

Two linearly independent eigenvectors are then the standard ~e1 and ~e2. The trajectories form
star nodes (straight lines through zero) which either go inward or outward depending on sign of
λ. They are then stable or unstable star nodes. If there is only a single linearly independent
eigenvector, then the solution is:

~x(t) = C1e
λt~v + C2e

λt(t~v + ~u)

The trajectories are so called degenerate nodes which can be either stable or unstable depending
on the sign of λ (stable when λ < 0). Note that as |eλtt| > |eλt| for large t, the solution eventually
becomes almost parallel to the vector ~v. The star and degenerate nodes occur on the curve of the
parabola on the stability curve (illustrated below) as the case of equal eigenvalues corresponds

to
»

Tr2(A)− 4|A| = 0 .

Notice that the different types of trajectories can be identified based on the values of Tr(A) and
|A| (for 2× 2 systems). The figure below shows trajectory types as a function of the two. Notice that
on the curve Tr2(A) = 4|A| which is a parabola, we have degenerate or star nodes since this is the case
corresponding to equal eigenvalues and we must check how many linearly independent eigenvectors
there are to determine the type of node.

Figure 1: Stability diagram for 2 × 2 linear constant coefficient systems relating trajectory types to
eigenvalues depending on values of Tr(A) and A.
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4 Nonlinear Sytems of ODEs and Linearization (Textbook: Section
7.1 - 7.2)

Nonlinear equations and systems are much harder to analyze then linear ones and the behavior can be
a lot more complicated. Consider the autonomous system (right hand side does not explicitly contain
the independent vaiable):

dx

dt
= f(x, y)

dy

dt
= g(x, y)

where f and g are nonlinear functions. Since it’s nonlinear, this system cannot be written in the form
~x′ = A~x. We have two fairly simple tools in our disposal for analyzing the behavior around equlibrium
points (where x′ and y′ are both zero). One is the method of nullclines (see handwritten notes) and
the other is linearization around the equilibrium points by means of taking only the linear terms of
the Taylor expansions. We now discuss the second approach. Around each equilibrium point (xe, ye)
(i.e. where f(xe, ye) = 0 = g(xe, ye)) we write a linearized system using the substitutions u = x− xe
and v = y − ye, where x, y, u, v are functions of t. Keeping only the first order terms of the Taylor
expansions of f(u, v) around (xe, ye), this results in the linear system:

ñ

u

v

ô

′

= J(xe, ye)

ñ

u

v

ô

(4.1)

where the Jacobian matrix of the system above is given by:

J =

ñ

fx fy
gx gy

ô

=⇒ J(xe, ye) =

ñ

fx(xe, ye) fy(xe, ye)
gx(xe, ye) gy(xe, ye)

ô

(4.2)

Now, if the Jacobian matrix J(xe, ye) in (4.1) is nonsingular (that is, it’s determinant |J(xe, ye)| 6= 0),
then there is a unique equilibrium point of this system (0, 0) and the behavior around (xe, ye) of the
nonlinear system can be found (in some cases) by finding the stability properties of the linearized
system around (0, 0). If J(xe, ye) is singular (zero determinant) no conclusion can be reached with this
method about stability properties of the nonlinear system around (xe, ye). Also, if J(xe, ye) has purely
imaginary eigenvalues so that around (0, 0) of the linearized system there are circles, the behavior
around (xe, ye) of the nonlinear system can be said to be either that of circles, unstable or stable
spirals (that is, we cannot conclude stability in this case). In all other cases, we expect the behavior of
the nonlinear system around (xe, ye) to match the behavior of the linearized system around (x0, y0).

Ex1. Consider the equation:
d2x

dt2
− (1− x2)

dx

dt
+ x = 0

Let y(x) = x′(t). Then y′ = x′′ = (1− x2)dx
dt

− x = (1− x2)y− x. Thus, we get the equivalent system:

x′ = y

y′ = (1− x2)y − x
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The only equilibrium point is (0, 0), when x = 0, y = 0. Here, f(x, y) = y and g(x, y) = (1−x2)y−x =
−x+ y − x2y. The Jacobian is:

J =

ñ

fx fy
gx gy

ô

=

ñ

0 1
−1− 2xy 1− x2

ô

=⇒ J(0, 0) =

ñ

0 1
−1 1

ô

(4.3)

The linearized system around (0, 0) is thus given by:

ñ

u

v

ô

′

=

ñ

0 1
−1 1

ô ñ

u

v

ô

(4.4)

Since u = x− xe = x− 0 = x and v = y − ye = y − 0 = y, we get the linearized system:

x′ = y

y′ = −x+ y

Since we have |J | = 1 and Tr(J) = 1, the eigenvalues are given by:

λ1,2 =
Tr(J)±

»

Tr2(J)− 4|J |
2

=
1± i

√
3

2

Since the real part of the eigenvalues is positive, the solutions of the linearized system spiral away
from the origin (unstable spiral) and we expect the solutions of the nonlinear system to spiral away
from the origin as well.

Reference: http://www.sosmath.com/diffeq/system/nonlinear/linearization/linearization.
html.
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