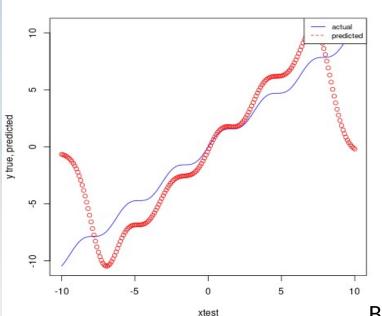
### **Overview of Gaussian Process Regression**

- Aim: Model an unknown function, (e.g. y can be  $C_L$  and x can be α) over an interval.
- We have access to noisy evaluations of this function:



 On the left, the uniform distribution is used for

$$- = sin(x) * cos(x) + x$$
 (blue curve)

GPR mean prediction (red curve)

single point conditional 
$$p(f_n|\bar{\mathbf{f}}) = \mathcal{N}(\mu_n, \lambda_n)$$
 
$$\mu_n = \mathbf{K}_{nM} \mathbf{K}_M^{-1} \bar{\mathbf{f}}$$
 
$$\lambda_n = K_{nn} - \mathbf{K}_{nM} \mathbf{K}_M^{-1} \mathbf{K}_{Mn}$$

Both mean and variance information, GP mean deviates from true value outside training interval.



#### **Role of Covariance Function**

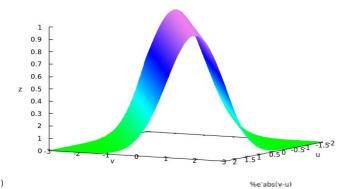
- The regularized covariance measures similarity between data points:
- (x: training data point,x': test data point)

Kernels:

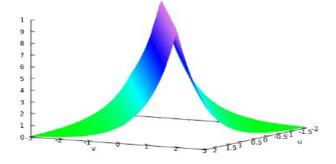
Gaussian
Exponential
Matern
Custom

Choice depends on data distribution.

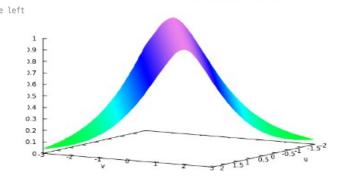
```
gp_solve <- function(x_train, y_train, x_pred, kernel, sigma2e = 0, a, b, c) {
 # Compute the covariance matrix for training data
 K train train <- kernel(x train, x train, a, b, c)
 # Add \lambda I regularizer for numerical stability
 K train train <- K train train + max(sigma2e, 1e-6) * diag(nrow(K train train))
 # Compute covariance between training and test data
 K train pred <- kernel(x train, x pred, a, b, c)</pre>
 # Compute covariance between test points
 K pred pred <- kernel(x pred, x pred, a, b, c)
 # Ensure correct size of the diagonal for jitter in K pred pred
 if (nrow(K pred pred) == ncol(K pred pred)) {
   K pred pred <- K pred pred + jitter * diag(nrow(K pred pred))</pre>
 # Solve for inverse using Cholesky factorization
 L <- chol(K train train)
 L inv <- solve(L)
 # Calculate the inverse of K train train using Cholesky factorization
 K train inv <- t(L inv) %*% L inv
 # Compute the predictive mean: K train pred %*% (K train train inv %*% y train)
 # Compute (K train inv %*% y train) first, then multiply by K train pred from the left
 alpha <- K train inv %*% y train
 mu pred <- t(K train pred) %*% alpha
 # Compute the predictive variance
 cov pred <- K pred pred - t(K train pred) %*% K train inv %*% K train pred
 # Return the predicted mean and variance
 solution <- list(mu = mu pred, var = cov pred)</pre>
 return(solution)
```



%e-((u-v)2/2)



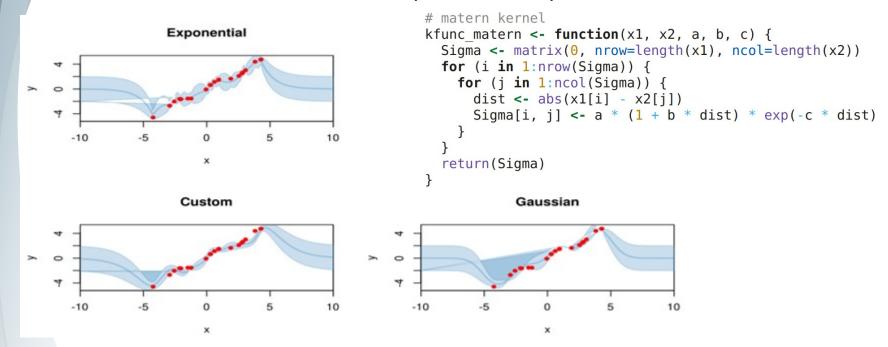
%e-abs(v-u)\*(abs(v-u)+1)





### **GP Kernel Candidates**

Results differ with different kernels on synthetic example:



In case of non-Gaussian noise, can take sum kernel, containing samples of assumed underlying noise distribution [A].

#### HOW DO WE CHOOSE THE OPTIMAL KERNEL AND ITS PARAMETERS (a,b,c,d)?

[A] Murray-Smith, Roderick, and Agathe Girard. "Gaussian Process priors with ARMA noise models." In *Irish Signals and Systems Conference, Maynooth*, pp. 147-152. 2001.



### **Comparison Metrics for Kernels**

Metrics to compare kernel performance on a given training and test data set

 Sum of error in the range of training set values:

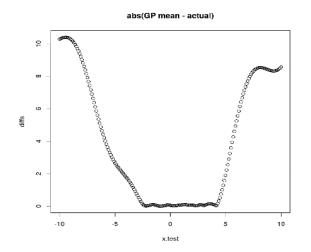


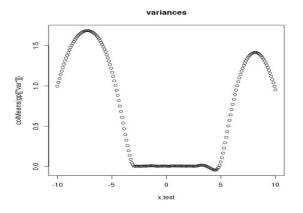
 Sum of variance in the range of training set values:

•()

Log-likelihood function (standard choice)

With and, the noisy training data.





Metrics 1 and 2 are plotted to show how they increase outside the range of training data supplied – as desired



### **Setting parameters**

Set up function, train/test values, and noise settings.

```
# define the function to use and write split train/test values
source('gp util.R');
ntrain = 300;
ntest = 80:
siqma2e = 1e-3
# training data
printf("setup train data and function\n");
x.train = matrix( rtruncnorm(n=ntrain, a=-10, b=10, mean=0, sd=5) ,ncol=1)
x.test = matrix( rtruncnorm(n=ntest, a=-10, b=10, mean=0, sd=5) ,ncol=1)
func str = 'sin(v) - cos(v)*sin(v) + v';
x = x.train:
v = x:
v.train = eval(parse(text = func str));
v = x.test;
y.test = eval(parse(text = func str));
y.noisy = y.train + runif(length(x.train),min = -sgrt(sigma2e), max = sgrt(sigma2e)); # add noise, not necessarily Gaussian
# split train data into test/train points to test different kernels
printf("saving function and data\n");
x ker.train = x[1:round(ntrain/3)]
x ker.test = x[(round(ntrain/3)+1):ntrain];
fp<-file("data/function.txt",'w')</pre>
writeLines(func str, fp)
close(fp)
write.table(x.train, 'data/x.train', sep=", ", col.names=FALSE, row.names=FALSE);
write.table(x.test, 'data/x.test', sep=", ", col.names=FALSE, row.names=FALSE);
write.table(x ker.train, 'data/x ker.train',sep=",",col.names=FALSE,row.names=FALSE);
write.table(x ker.test,'data/x ker.test',sep=",",col.names=FALSE,row.names=FALSE);
write.table(y.noisy,'data/y.train noisy',sep=",",col.names=FALSE,row.names=FALSE);
write.table(y.train, 'data/y.train',sep=",",col.names=FALSE,row.names=FALSE);
write.table(y.test, 'data/y.test',sep=",",col.names=FALSE,row.names=FALSE);
```

### **Optimizing the kernel**

```
for(nt in 1:ntrials) {
                                                                 Subdivide the training set into
printf("trial %d of %d\n", nt, ntrials);
v = x.train;
                                                                  several train / test splits for each
v = eval(parse(text = func str));
y.noisy = y + runif(length(x.train), 0, sqrt(sigma2e))
                                                                 trial; generate GP models with
v = x.test;
ytest true = eval(parse(text = func str));
svals\overline{1} = c(); svals2 = c(); svals3 = c(); loglikevals = c();
                                                                  different kernels and record
for ( k in 1:length(kernels) ) {
                                                                  performance metrics.
printf("test kernel %d\n", k);
qp = qp solve(x.train, y.noisy, x.test, kernels[[k]], sigma2e, a, b, c, d)
# compute var sum
var sums = colMeans(qp[['var']]);
sval1 = sum(var sums);
print("sum of variances 1:");
sval1 = sum(var sums);
print(sval1);
svals1 = c(svals1, sval1);
                                             The Mode (best kernel per the log-likelihood)
inds = which (x.test > -5 & x.test < 5)
var sums2 = abs(var sums[inds]);
                                             metric) is then selected out of all trials.
print("sum of variances 2:");
sval2 = sum(var sums2)
print(sval2)
svals2 = c(svals2, sval2);
diffs = gp[['mu']] - ytest true;
diffs = abs(diffs[inds]);
sval3 = sum(diffs);
svals3 = c(svals3, sval3);
loglikeval = get log likelihood( x.train , y.noisy , x.test , kernels[[1]] , sigma2e = 0, a, b, c, d );
loglikevals = c(loglikevals, loglikeval);
bestknum = which.max(loglikevals);
bestknums = c(bestknums, bestknum);
printf("per loglikelihood, best kernel is %s\n", kernel.names[which.max(loglikevals)]);
# kernel loop
```

### Optimizing the parameters of chosen kernel

We can define a function (based on some performance metric, e.g. log-likelihood):

$$\mathcal{L} = -\log p(\mathbf{y}|\boldsymbol{\theta}) = \frac{1}{2}\log \det \mathbf{C}(\boldsymbol{\theta}) + \frac{1}{2}\mathbf{y}^{\top}\mathbf{C}^{-1}(\boldsymbol{\theta})\mathbf{y} + \frac{N}{2}\log(2\pi)$$

where 
$$\mathbf{C} = \mathbf{K} + \sigma^2 \mathbf{I}$$

Then e.g. gradient descent scheme gives:

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma_n \nabla F(\mathbf{x}_n), \ n \geq 0.$$

For this, we have to estimate the gradient. We can also use a gradient free scheme (e.g. randomized coordinate descent). At each iteration:

- Pick at random parameter p to optimize (a,b,c, or d).
- Fix other parameters to previously determined values.
- For chosen parameter, loop over range of values, form GP model and evaluate (x).
- Determine value of p that optimizes (x), update parameter value.

Works well, when there are few parameters and the gradient cannot be estimated easily to suitable accuracy.



# Optimizing the parameters

```
# pick random num in 1-4 range
coord to opt = round(runif(1, 1, 4));
printf(">>>>>> iter = %d -> coord to opt = %d\n", k, coord to opt);
svals1 = c();
svals2 = c();
svals3 = c();
loglikevals = c();
                                                                               In each iteration, a random
for ( vind in 1:length(as) ) {
                                                                               parameter is optimized.
if (coord to opt == 1) {
    a = as[vind]; b = bsave; c = csave; d = dsave;
} else if (coord to opt == 2) {
    a = asave; b = bs[vind]; c = csave; d = dsave;
} else if (coord to opt == 3) {
    a = asave; b = bsave; c = cs[vind]; d = dsave;
} else if (coord to opt == 4) {
    a = asave; b = bsave; c = csave; d = ds[vind];
printf("test kernel %d\n", k);
qp = qp solve( x.train , y.noisy , x.test , kernels[[opt kernel]] , sigma2e, a, b, c, d )
# compute var sum
var sums = colMeans(qp[['var']]);
sval1 = sum (var sums);
print("sum of variances 1:");
                                              R code for
sval1 = sum(var sums); print(sval1);
svals1 = c(svals1,sval1);
                                              implementing randomized
inds = which (x.test > -5 & x.test < 5)
var sums2 = abs(var sums[inds]);
                                               coordinate descent.
print("sum of variances 2:");
sval2 = sum(var sums2); print(sval2)
svals2 = c(svals2, sval2);
diffs = gp[['mu']] - ytest_true;
diffs = abs(diffs[inds]);
sval3 = sum(diffs);
svals3 = c(svals3, sval3);
loglikeval = get log likelihood(x.train, y.noisy, x.test, kernels[[opt kernel]], sigma2e = 0, a, b, c, d);
loglikevals = c(loglikevals, loglikeval);
if (coord to opt == 1){
   asave = as[which.max(loglikevals)]; b = bsave; c = csave; d = dsave;
 else if (coord_to_opt == 2){
   a = asave; bsave = bs[which.max(loglikevals)]; c = csave; d = dsave;
 else if (coord_to_opt == 3){
   a = asave; b = bsave; csave = cs[which.max(loglikevals)]; d = dsave;
  else if (coord_to_opt == 4){
   a = asave; b = bsave; c = csave; dsave = ds[which.max(loglikevals)];
```

Instead of running optimization loop for many iterations, what if we run a few times with different cost expenditures and combine the results?

Given two models, that both estimate the same quantity of interest, the approach [B] determines constants for the linear combination model: This can then be extended to an arbitrary number of models.

$$\mathbf{k} = [k_1, k_2]^T$$
 and

with:

$$\Sigma = \begin{bmatrix} \mathbb{E}[\tilde{f}_1(\mathbf{x}^*)^2] & \mathbb{E}[\tilde{f}_1(\mathbf{x}^*)\tilde{f}_2(\mathbf{x}^*)] \\ \mathbb{E}[\tilde{f}_2(\mathbf{x}^*)\tilde{f}_1(\mathbf{x}^*)] & \mathbb{E}[\tilde{f}_2(\mathbf{x}^*)^2] \end{bmatrix} = \begin{bmatrix} \sigma_1^2 & \rho\sigma_1\sigma_2 \\ \rho\sigma_1\sigma_2 & \sigma_2^2 \end{bmatrix}.$$

Both this approach [B] and co-krigging are similar: goal is to reduce the variance of the combined estimator.

```
# now apply multi fidelity thomison
printf("apply multi fidelity thomison..\n");
rho = cor(mu_vals1,mu_vals2);
mu vals comb = mu vals1;
var vals comb = var vals1;
for(i in 1:length(mu_vals1)){
   sig1sq = var_vals1[i];
   sig2sq = var vals2[i];
   sig1 = sqrt(sig1sq);
   sig2 = sqrt(sig2sq);
   mu1 = mu vals1[i];
   mu2 = mu vals2[i];
   var vals comb[i] = (1 - rho^2)*sig1sq*sig2sq/(sig1sq + sig2sq - 2*rho*sig1*sig2);
```

Rho, the correlation coefficient.

[B] Thomison, William D., and Douglas L. Allaire. "A Model Renical property and to Fusing Information from Multifidelity Information Sources." In 19th AIAA Non-Deterministic Approaches Conference, p. 1949. 2017.

Can calculate correlation coefficient in portions, in terms of the two model means.

```
n = length(mu vals2);
rho1 = cor(mu vals2[1:round(n/4)], mu vals3[1:round(n/4)]);
rho2 = cor(mu vals2[round(n/4):round(n/2)], mu vals3[round(n/4):round(n/2)]);
rho3 = cor(mu \ vals2[round(n/2):round(3*n/4)], mu \ vals3[round(n/2):round(3*n/4)]);
rho4 = cor(mu_vals2[round(3*n/4):round(n)],mu_vals3[round(3*n/4):round(n)]);
mu vals comb = mu vals2:
var vals comb = var vals2;
for(i in 1:length(mu vals2)){
   if(i \le n/4){
        rho = rho1;
    else if(i>n/4 \&\& i<=n/2){
        rho = rho2;
   else if(i>n/2 && i<=round(3*n/4)){
        rho = rho3;
   else{
        rho = rho4;
   sig1sq = var vals2[i];
    siq2sq = var vals3[i];
   sig1 = sqrt(sig1sq);
    sig2 = sqrt(sig2sq);
   mu1 = mu \ vals2[i];
    mu2 = mu vals3[i]:
```

The relationship between the two means varies over the testing interval.

To account for this, rho can be calculated locally; for extension, one can look at crossing points of the mean values of two models.

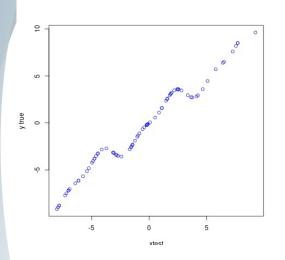
Another approach based on simplified co-krigging:

(the information sources are only related to the highest fidelity information source and not to each other). GP models built for all quantities on the right.

[C] Ghoreishi, Seyede Fatemeh, and Douglas L. Allaire. "Gaussian process regression for Bayesian fusion of multi-fidelity information sources." In 2018 Multidisciplinary Analysis and Optimization Conference, p. 4176. 2018.

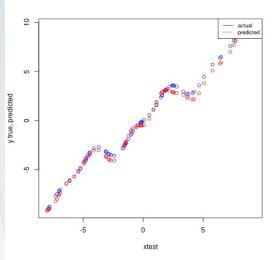


# Example: $y(x) = \sin(x)*(1-\cos(x)) + x$



200 training values, 100 testing values Uniform distribution noise, [-0.12,0.12]

**Actual values** 

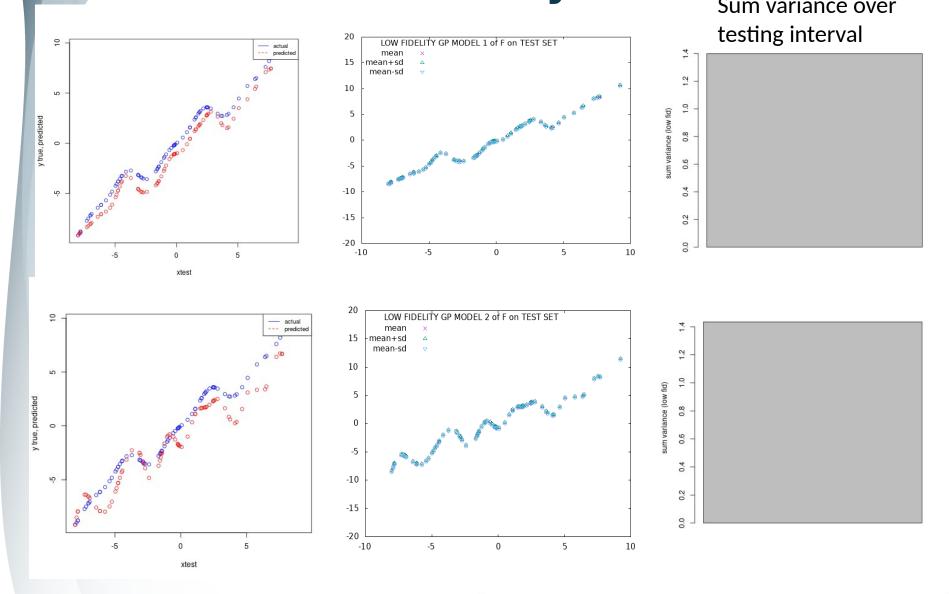


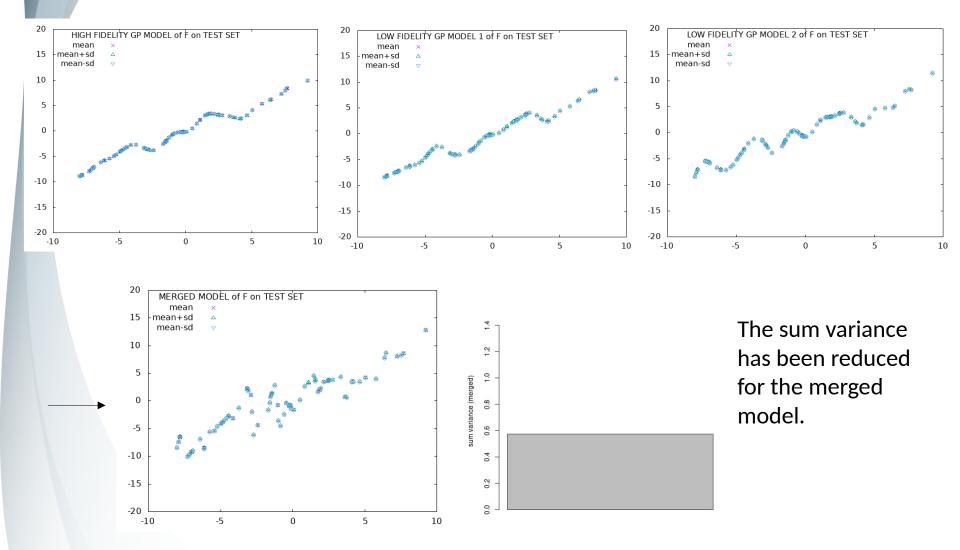
High fidelity GP result with kernel / parameter optimizer.

Can we merge two low fidelity approximations and obtain something similar?

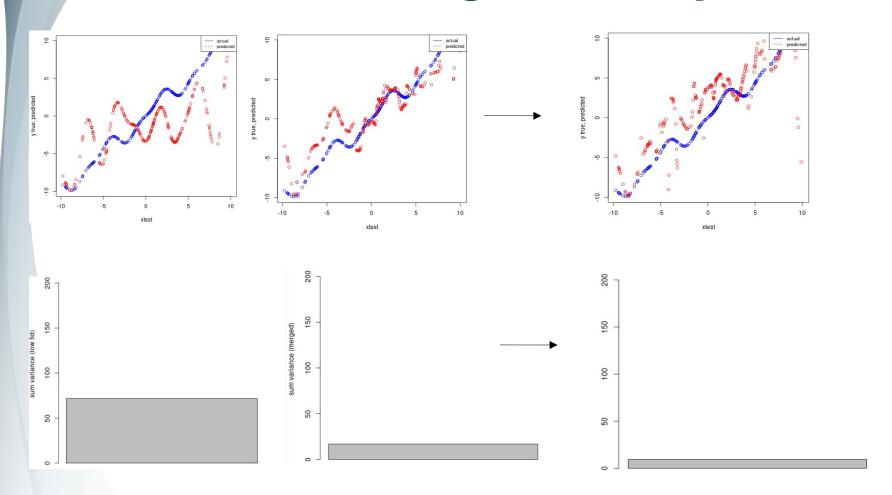


# Two low fidelity models Sum variance over





# **Another merged example**



Reduction in variance shown on the right is of the merged model parameters.

