from sklearn.ensemble import ExtraTreesClassifier from sklearn.model_selection import GridSearchCV # Demo of model parameter tuning # load X_train, y_train data model = ExtraTreesClassifier(n_estimators=100, max_features=30); # to check preset parameters, one can use # model.get_params().keys() gsc = GridSearchCV( estimator=model, param_grid={ 'n_estimators': range(20,140,20), 'max_features': range(20,140,20), 'min_samples_leaf': range(1,4,1), #'min_samples_split': range(15,35,10), }, scoring='r2', cv=3 ) grid_result = gsc.fit(X_train, y_train); print(grid_result.best_params_);