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1 Overview of the SIR model

The spread of the novel coronavirus which causes the COVID-19 disease can be modeled with a simple
differential equation model called SIR [1], where in a whole population of a given region, S stands for
the number of susceptible people to infection, I for the number of infections, and R for the number
recovered during an epidemic. Note that the spread of this virus occurs directly from person to person
without an intermediary such as a mosquito, which makes simple models such as SIR applicable. The
default SIR model makes a number of simplifications, in part because it does not assume population
change due to birth and death, and age and time/weather dependent factors, although some of these
changes can be worked into the model. Susceptible individuals are individuals that have never been
infected and are able to catch the disease, which for this virus presents almost the entire population,
with the exception of those survived and recovered. This is in contrast to a new strain of the flu,
with which most individuals have some experience due to being sick before with a likely different,
but similar structured strain. Recovered individuals are assumed to remain immune from developing
the disease and are not considered to become possible virus spreaders if exposed. Without vitality
stats, the population is fixed so that S + I + R = N and the disease spreads through the interaction
of susceptible and infected individuals. There are two parameters 0 < γ, β < 1 which control the
time evolution of S, I,R. It is assumed that an infected individual recovers at rate γ, so the period
of infection is 1/γ days (for coronavirus this period seems long, on the order of 10 or more days).
The second parameter β is the approximate normalized transmission rate and is proportional to the
fraction of how often a susceptible-infected contact results in a new infection [2] (for coronavirus this is
relatively high, as it is found to be easily transmissive with close contact). Based on these assumptions,
the spread can be described by the following differential equations:
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The term β SI
N represents the number of newly infected individuals per unit time, corresponding to

homogeneous mixing of the infected and susceptible cases, the negative of which is the rate at which S
decreases. The sum of the three equations is zero which represents that the total population doesn’t
change (a plausible estimate for a large enough region). The rate of change of infections is β SI

N minus
the rate of recovery, which is γI and equal to the time derivative of R. We can also easily introduce
vitality statistics (birth and death) into the differential system. The new births act to increase the
susceptible population, while the deaths decrease all the three S, I,R quantities. This logic leads to
the system:
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where µ, ν are respectively the normalized birth and death rate parameters. Also possible is to
differentiate between mortality rates for the three different groups and account for loss of immunity
over time [1].

2 Basic modeling

The system of first order differential equations above can be solved from given initial conditions for
S, I,R and the parameter values γ and β. The solution can be obtained at future time by e.g.
the Runge-Kutta method. Notice first, that the infection will always die out, no matter the initial
conditions. If not, dR

dt > 0 at t→∞, implying R →∞, a contradiction. The following R code shows
the basic steps in the differential system setup, parameter initialization and integration:

1 library(deSolve)

2 N = 1e7;

3 integration_range = seq(from=0,to=100,by=0.1)

4
5 sir_equations <- function(time , variables , parameters) {

6 with(as.list(c(variables , parameters)), {

7 dS <- mu*N - beta * I * S/N - nu*S;

8 dI <- beta * I * S/N - gamma * I - nu*I;

9 dR <- gamma * I - nu*R;

10 return(list(c(dS , dI , dR)))

11 })

12 }

13
14 param_vals <- c(

15 beta = 0.3,

16 gamma = 0.1, nu = 0.01, mu = 0.01

17 )

18
19 initial_values <- c(

20 S = N,

21 I = 30,

22 R = 20

23 )

24
25 sir_sys_sol <- ode(

26 y = initial_values ,

27 times = integration_range ,

28 func = sir_equations ,

29 parms = param_vals

30 )

31
32 sir_sys_sol = as.data.frame(sir_sys_sol);

33 plot(integration_range , sir_sys_sol$I, col="red", ylim=c(1,N), main=’Urban spread model’, xlab

=’time (days)’, ylab=’I(t),R(t)’)

34 points(integration_range , sir_sys_sol$R, col="blue", ylim=c(1,N))

35 lines(integration_range , sir_sys_sol$R, col="blue", ylim=c(1,N))

36 legend("left", c("infected", "recovered"),

37 col = c("red", "blue"), lty = 1, bty = "n")

Below, we show some examples from the online resource [2] and the above listing. For example, let
us suppose that S = 10000, I = 50, and R = 25. This would mean that we are starting with about
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0.5% infection rate, and that some of the infected have already recovered, in given proportion. If we
simulate the results for fixed γ = 0.066 (roughly 1/15) with different values of β, we obtain:

Figure 1: Simulations for evolution of S, I,R over first 50 days with β = 0.2, 0.3, 0.4 (top) and example
simulation with vitality stats for I,R(t) and corresponding diff(I(t)).

Notice that in a short time period the value of γ would not change (unless e.g. a fast curing drug is
discovered or the virus significantly mutates). For this reason, the only thing we can affect is the value
of β, via measures such as social distancing and also environmental factors such as air temperature
and humidity. With a lower value of β it takes longer time to reach the peak and the peak of infected
individuals (light blue curve) ascends to a lower maximum than for higher values of β. Slightly higher
values significantly elevate the peak and shorten the time to achieve it. With β = 0.4, starting from
50 infections, we get roughly half the population (of 10075) infected in 3 weeks. Notice that overall
I(t) numbers reported very official and news media agencies for a given region are a sample of the
overall numbers (as only a subset of those infected are typically tested). On the other hand, the rate
of change of infections dI/dt can be analyzed and compared to the reported numbers. Parameters
(e.g. α, β, µ, ν) can be tuned based on past data (so the calculated dI/dt reflects the observed trend or
possibly some processed, statistically imputed, or interpolated data) and the optimized model can be
used to make predictions into the near future. This can be done by pre-supposing some initial values
for the parameters and in a loop, choosing randomly a parameter to tune and varying the value of the
chosen parameter, while comparing the resulting dI/dt behavior (as obtained from integration with
the current parameter settings) to the observed trend, setting the parameter value corresponding to
the closest match in some least squared sense.

Also important is the so called herd immunity containment scenario, in which I(t) does not increase,
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reach a maximum and then decrease as in the above plots, but rather decreases monotonically to zero.
This occurs, when the so called effective reproductive number is less than 1. If a fraction of the
population has been vaccinated, or gains immunity, then ρS(0) individuals are removed from the
susceptible population at the beginning. It can be shown that containment occurs if ρ ≥ ρc = 1− 1

Re

[1]. The reproductive number Re for the novel coronavirus is estimated at between 2− 4, though with
large possible variation [4]. This means that up to about 70% of the population must gain immunity
before a containment scenario. While so, it is likely that infection rates will drop in the Summer in the
Northern hemisphere with higher air temperatures and more concentrated UV lighting [3], effectively
reducing air-to-air transmission outdoors. However, overall, outbreaks may continue until the critical
immune threshold is reached via vaccination or natural means.
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