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(1) Some applications of my work: geotomography, imaging and
compression, sparse signals, data fitting.
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Geotomography delay time inverse problem

Goal: to create a 3D map of the interior structure of the Earth using data
from earthquakes. Existing spherically symmetric model v0(r) and delay times
δTi used to construct corrections δv(r).

δTi = Ti − T 0
i =

∫
Ri

dr

v(r)
−
∫
R0
i

dr

v0(r)

By Fermat’s principle, travel time of ray is stationary with respect to small
changes in ray path, so we can use the reference path R0

i :

δTi =

∫
Ri

δv−1 (r(s)) ds ≈ −
∫
R0
i

δv(r)

v2
0(r)

ds =

∫ si(∆)

si(0)

−v−1
0 (r)

δv(r)

v0(r)
ds

We typically replace −v−1
0 (r) by a sensitivity kernel K(r).
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Linearization to Ax = b̄ (with error) for m× n matrix A

(δT )i =

N∑
j=1

xj

∫
[K(r)]i,jdr =⇒ b̄i =

N∑
j=1

Ki,jmj =⇒ b̄ = Ax

=⇒ Ax = b̄ with Ai,j = Ki,j , xj =
δvj

(v0)j
and b̄i = [(δT )i].

Matrix rows correspond to source-receiver pair kernel

Min=−7.69e−05

Max=5.34e−05
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Matrix columns correspond to coordinate system grid

E.g. take set of radii (levels) and at each level project sphere onto cube.

Min=−3

Max=4.9154

 

 

−5 −2.5 0.0 2.5 5

Azimut: 90
o

n=(35
o
N,−120

o
E)

  ∆
x
=20km

 ∆
y
=20km

testslice

Min=0
Max=4.4088

 

 

−5 0 5

Min=−3

Max=4.9154

 

 

−5 −2.5 0.0 2.5 5

Sergey Voronin Geotomography 5/85



Solving Ax ≈ b to recover useful features.

◦ A has rapid decay of singular values, rhs noisy: need least squares +
regularizer.

◦ Possibility to include correction terms.

◦ Need to pick up multi-scale resolution components in x.

◦ Least Squares

x̄ = arg min
x

{
‖Ax− b‖22

}
=⇒ ATAx̄ = AT b

=⇒ x̄ = VDiag(
1

σi
)UT b

Very large norm for small σi.

◦ Tikhonov Regularization

x̄λ = arg min
x

{
‖Ax− b‖22 + λ‖x‖22

}
=⇒ (ATA+ λI)x̄λ = AT b

=⇒ x̄λ = VDiag(
σi

σ2
i + λ

)UT b

Tikhonov minimization filters the effects of singular vectors
corresponding to small singular values.
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Variance of Solutions
We define:

Cov(x, y) = E[(x− E[x])(y − E[y])] ; var(x) = Cov(x, x) = E[(x− E[x])2]

Assume b = b̄+ e (the true data plus noise). Assume the two are uncorrelated
and that E[e] = 0.

var(e) = E[(e− E[e])(e− E[e])T ] = E[eeT ] = ν2I

var(b) = E[(b− E[b])(b− E[b])T ] = E[eeT ] = ν2I

For the least squares solution:

‖ var(x̄)‖22 =
ν2

σ2
r

For Tikhonov solution:

‖ var(x̄λ)‖22 ≤
ν2

4λ
Regularized solutions are not as sensitive to noise in b and to approximation
of A.
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Tikhonov regularization with smoothing

x̄ = arg min
x

{
‖Ax− b‖22 + λ1‖x‖22 + λ2‖Lx‖22

}
arg min

x

∥∥∥∥∥∥
 A√

λ1I√
λ2L

x−
b0

0

∥∥∥∥∥∥
2

2

=⇒

 A√
λ1I√
λ2L

T  A√
λ1I√
λ2L

 x̄ =

 A√
λ1I√
λ2L

T b0
0


Smoothness controlled by Laplacian operator L

Min=−49.9635

Max=63.7511

 

 

−10 −5 0.0 5 10

Min=−8.5395

Max=5.5167

 

 

−5 −2.5 0.0 2.5 5

Including correction terms.

{x̄, v̄} = arg min
x,v

{∥∥∥∥[A C
0 D

] [
x
v

]
−
[
b
0

]∥∥∥∥2

2

+ λ1‖x‖22 + λ2‖Lx‖22

}
where C is a matrix of correction columns and D = εI is a matrix of damping
terms to control the size of the correction solution portion v.
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Representation of model in wavelet basis (with F.J. Simons,
G. Nolet, et al., 2011, 2013)

Let w = Wx and x = W−1w. Then Ax = b =⇒ AW−1w = b.

bi =
N∑
j=1

Ki,jxj =

N∑
j=1

Ki,j

(
N∑
k=1

W−1
j,kwj

)
=

N∑
j=1

N∑
k=1

Ki,jW
−1
j,kwj

For orthogonal transform W one has ‖Wx‖22 = ‖x‖22 and hence minimizing
‖Ax− b‖22 + λ‖Wx‖22 is equivalent to minimizing ‖Ax− b‖22 + λ‖x‖22. For
sparse minimization, we use a sparse penalty in the wavelet domain, e.g.:

w̄ = arg min
w

{
‖AW−1w − b‖22 + 2τ‖w‖1

}
; x̄ = W−1w̄

Compactly supported wavelets

ψk,n(t) = a−k/2ψ(a−kt− nb)

x(t) =
∑
k∈Z

∑
n∈Z

〈x, ψk,n〉ψk,n(t)
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Translations and Scalings of the Haar Wavelet

Different choices of wavelets
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Sparse and wavelet based regularization

◦ Different constraints on the solution are possible. E.g. sparsity (few
nonzeros) with respect to a suitable basis.

x̄1 = arg min
x

{
‖Ax− b‖22 + τ‖x‖22 + λ‖Lx‖22

}
x̄2 = arg min

x

{
‖Ax− b‖22 + τ‖x‖1

}
w̄3 = arg min

w

{
‖AW−1w − b‖22 + τ‖w‖1

}
; x̄3 = W−1w3

◦ These opt problems can be solved via CG and iterative thresholding:

(A∗A+ τI + λL∗L) x̄1 = A∗b

w̄n+1 = S τ
2

(w̄n +A∗(b−Aw̄n))

◦ Need be able to apply methods with very large matrices (several TB).
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Sample global and local reconstructions (68 KM, 135 KM)

0˚ 60˚ 120˚ 180˚ −120˚ −60˚

−60˚

−30˚

0˚

30˚

60˚

0˚ 60˚ 120˚ 180˚ −120˚ −60˚

−60˚

−30˚

0˚

30˚

60˚

110˚ 120˚ 130˚ 140˚ 150˚ 160˚

−40˚

−30˚

−20˚

−10˚

0˚

run7_local0068

110˚ 120˚ 130˚ 140˚ 150˚ 160˚

−40˚

−30˚

−20˚

−10˚

0˚

run7_local0135

These models consist of 3 million variables; required significant amounts of
large cluster computer use.
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Regularization parameter estimation

Need to find optimal regularization parameter τ to use.

ε̄ = log ‖xτ‖ and ρ̄ = log ‖Axτ − b‖.

c̄τ = 2
ρ̄′ε̄′′ − ρ̄′′ε̄′

((ρ̄′)2 + (ε̄′)2)
3
2

,

⇒ Requires several runs with possibly very large matrix A.
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Sparse signals

◦ Can one identify the support of a sparse signal from a limited number of
measurements?

E.g. intermittent bird singing in the forest, sound blurred by strong wind.
(One wants to find the times when a particular noise is made) ⇒ Ax = b.

◦ Can do frequency filtering with FFT but this will not tell you where in
time a particular frequency occured.

◦ Typically, can phrase this as a linear problem Ax = b s.t x is sparse and
would like to identify the support of x.
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Denoising and deblurring of images

Denoising with Wavelet thresholding:

w̃ = T[Wx]⇒ x̃ = W−1w̃

Deblurring with FFT and filter:

g(x, y) = f(x, y) ? h(x, y) + n(x, y)

G(kx, ky) = F (kx, ky)H(kx, ky) +N(kx, ky)

F̃ (kx, ky) = Y (kx, ky)G(kx, ky)

For noisy and blurred images, iterative de-convolution can be used.
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Known blurring source

When the blurring source is known (or can be estimated) a linear optimization
problem can be setup. Images can be blurred via convolution:

(?) + (noise) =

Blurring can be represented in terms of a linear operator:

Deblurring done in terms of a least squares problem:

Bx = y + n→ x̄ = arg min
x

{
‖Bx− y‖2 + Φ(x)

}
◦ What to pick for Φ(x)? How to estimate B when the blur source is

unknown?
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High ratio image and video compression

◦ Take image matrix X (or well compressible portion).

◦ Apply 2D wavelet transform (CDF 97) to get w = WX.

◦ Apply thresholding to get w̃ = T(w).

◦ Further compress w̃. Use W−1(·) to reconstruct.

How to compress w̃ further?

Original and compression ratios 2, 4, 8 after pure wavelet compression.
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Nonlinear model fitting

Fitting set of points (t1, y1), . . . , (tm, ym) with a nonlinear model. E.g.

F (x, t) = x1 exp
(
− (t−x2)2

2x23

)
+ x4. Penalty: g(x) = 1

2
‖r(x)‖2.
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Newton and Gauss Newton
Fitting set of points (t1, y1), . . . , (tm, ym) to a nonlinear model. Let
g(x) = 1

2
‖r(x)‖2 with ri(x) = yi − F (x, ti).

Model fitting min problem: x̄ = arg minx g(x).
Setting ∇g(x) = 0, yields with Newton’s method:

x̄n+1 = x̄n −
[
∇2g(x̄n)

]−1∇g(x̄n)

Expanding the gradient and Hessian of g yields:

∇g(x) =

m∑
i=1

ri(x)∇ri(x) = JT r(x) where J = J [r(x)]

∇2g(x) =

m∑
i=1

∇ri(x)∇ri(x)T +

m∑
i

ri(x)∇2ri(x) = JTJ + T (x) ≈ JTJ.

T (x) =
∑m
i=1 ri(x)∇2ri(x) and J [r(x)](i,:) = ∇ri(x)T = −∇F (x, ti)

T .

Gauss-Newton Method: x̄n+1 = x̄n −
[
JTn Jn

]−1
JTn rn is easy but not stable!
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Improvements of Gauss-Newton method

◦ Introduction of step size (“αn”)

x̄n+1 = x̄n − αn
[
JTn Jn

]−1

JTn rn

αn = arg min
α
g(x̄n − αsn) with JTn Jns

n = JTn rn.

◦ Regularization (Levenberg-Marquard method): JTn Jny = JTn rn replaced
by `2 norm penalty: (JTn Jn + λI)ỹ = JTn rn. (Prof. Mikesell’s group
looking into this).

◦ Other types of regularization here? Methods for parameter estimation of
λ? Previous tools apply to this non-linear problem.
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(2) Matrix compression. The matrices in applications can be very
big!
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The big matrix A

In Geotomography application, A is of size 2968933× 3637248 (≈ 2− 3 TB in
sparse format). It’s too big. We divide into 20 blocks:

A =


A1

A2

...
A20


Each block is between 50, 000 and 500, 000 rows. Can do block matrix
operations:

A =


A1

A2

...
Ap

 =⇒ Ax =


A1x
A2x

...
Apx

 ; AT y =


A1

A2

...
Ap


T 

y1

y2

...
yp

 =

p∑
j=1

ATj yj
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Idea for compressing blocks of A

The blocks of A in original form are too big. Want to compress them in a
simple way. We appeal to Wavelet image compression:

x ≈W−1 (Thr(Wx))
The original image is approximately equal to the inverse transform of the

thresholded forward transform of the image.

Original; retain 15% of largest (by absolute value) wavelet coefficients; retain
3%. By thresholding, we mean the hard thresholding function:

Hα(x) = {x if |x| > α and 0 if |x| ≤ α}

To see if this works for the matrix, we apply it to some rows of A.
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Wavelet compression for kernels

Left: x ; Right: W−1 (Thr(Wx)) retain 5% largest coefficients

Min=−0.00742

Max=0.00446

 

 

−0.0005 −0.00025 0.0 0.00025 0.0005

Min=−0.0078295

Max=0.0042278

 

 

−0.0005 −0.00025 0.0 0.00025 0.0005

Another kernel, from 25% and 5% retained.

We have to retain about 25%.
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Applying wavelet compression to matrix vector ops [with D.
Mikesell, G. Nolet, 2015]

A =


r1

r2

...
rm

→M =


Thr(WrT1 )T

Thr(WrT2 )T

...
Thr(WrTm)T

 = Thr(AWT ) ≈ AWT

We can then approximate the operations Ax and AT y with the matrix M .

Mx ≈ AWTx and MT y ≈ (AWT )T y = WAT y

we obtain the approximation formulas:

Ax ≈MW−Tx and AT y ≈W−1MT y

To test how well this works, we need to write code to form A, then form M
and to be able to apply the wavelet transforms.
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Result for one-matrix case
Sizes: A1 (438674× 3637248) is 115 GB; M1 (438674× 3637248) is 35 GB
A1x versus M1W

−Tx; AT1 y versus W−1MT
1 y; and AT1 A1x versus

W−1MT
1 M1W

−Tx for 50 random vectors x and y.

Errors in A1x and AT1 y about 8%. Errors in AT1 A1x about 15%. Now we
compare the solutions to:

(AT1 A1 + λI)x1 = AT1 b and (W−1MT
1 M1W

−T + λI)x2 = W−1MT
1 b

What really matters is the error in the operation AT1 A1x.
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Min=−13.4341

Max=10.9303
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 ∆
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Compression works well but only for individual blocks

Error at one depth about 5%; error at all depths about 12% (similar to AT1 A1x
error) ; consequence of Tikhonov regularization

Min=−13.4341

Max=10.9303

 

 

−3 −1.5 0.0 1.5 3

Min=−13.5311

Max=11.0029

 

 

−3 −1.5 0.0 1.5 3
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Using the whole system of 3 million rows

A =


A1

A2

...
A20

 =⇒ Ax =


A1x
A2x

...
A20x

 ; AT y =


A1

A2

...
A20


T 

y1

y2

...
y20

 =

20∑
j=1

ATj yj

approximated via:

M =


Thr(A1W

T )
Thr(A2W

T )
...

Thr(A20W
T )

 =⇒ Ax ≈


M1W

−Tx
M2W

−Tx
...

M20W
−Tx

 ; AT y ≈
20∑
j=1

W−1
j MT

j yj

For this, we first form the 20 submatrices M1, . . .M20 by transforming and
thresholding the rows of A1, . . . , A20 (a lot of i/o).

Not enough compression for a ≈ 2 TB matrix

Want to take advantage of rapid singular value decay of A.
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(3) Low rank decompositions and randomized algorithms for
efficiently computing them.
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Low Rank SVD

A =
[
u1 . . . ur

]

σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σr


 v
∗
1

...
vr
∗

 = UΣV ∗

≈ UkΣkV
∗
k =

[
u1 . . . uk

]

σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σk


 v
∗
1

...
vk
∗


with k << r ≤ min(m,n).

◦ A is sparse m× n
◦ Uk is dense m× k
◦ Σk is diagonal k × k
◦ Vk is dense n× k
◦ =⇒ if k is much smaller than min(m,n) one gets very substantial

savings.
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Randomized algorithm O(mnk), [Halko, Martinsson, Tropp]

◦ A is m× n
◦ Uk is m× k, U∗kUk = I ; Vk is n× k, V ∗k Vk = I; Σk is k × k.

Sample range of A with k + p lin. indep. vectors, so that QQ∗A ≈ A.

◦ Draw an n× (k + p) Gaussian random matrix Ω.
Omega = randn(n,k+p)

◦ Form the m× (k + p) sample matrix Y = AΩ.
Y = A * Omega ; ranY ≈ ranA

◦ Form an m× (k + p) orthonormal matrix Q such that Y = QR.
[Q, R] = qr(Y) ; ranQ ≈ ranA

◦ Form the (k + p)× n matrix Q∗A.
B = Q’ * A

◦ Compute the SVD of the smaller (k + p)× n matrix B: B = ÛΣV ∗.
[Uhat, Sigma, V] = svd(B)

◦ Form the matrix U = QÛ .
U = Q * Uhat ; QQ∗A ≈ A

◦ Uk = U(:, 1 : k),Σk = Σ(1 : k, 1 : k), Vk = V (:, 1 : k).
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Low rank SVD via SVD of (k + p)× (k + p) matrix

SVD of B = Q∗A which is (k + p)× n is expensive, but we can work with
BB∗ = Q∗AA∗Q which is (k + p)× (k + p).

B = UΣV ∗ =

k∑
i=1

σiuiv
∗
i and Bvi = σiui

From which it follows that we can extract the eigenvectors ui from BB∗:

BB∗ =

(
k∑
i=1

σiuiv
∗
i

)(
k∑
j=1

σjujv
∗
j

)∗
=

k∑
i,j=1

σiσjuiv
∗
i vju

∗
j =

k∑
i=1

σ2
i uiu

∗
i

For the right eigenvectors vi we can use:

B∗U = V ΣU∗U = V Σ =⇒ B∗UΣ−1 = V

=⇒ vi = V ei = (B∗UΣ−1)ei =
1

σi
B∗ui

Power sampling scheme

(AA∗)qA = UΣ(2q+1)V ∗
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Eckart-Young Thm ; Power Sampling (AA∗)qAΩ, q ≥ 1.

A an m× n matrix. For 1 ≤ k ≤ min(m,n), the truncated SVD Ak gives:

‖A−Ak‖2 = σk+1 ; ‖A−Ak‖F =

min(m,n)∑
j=k+1

σ2
j

1/2

(1)

E‖A− UkΣkV
∗
k ‖F =

(
1 +

k

p− 1

) 1
2

min(m,n)∑
j=k+1

σ2
j


E‖A− UkΣkV

∗
k ‖2 =

(
1 +

√
k

p− 1

)
σk+1 +

(
e
√
k + p

p

)min(m,n)∑
j=k+1

σ2
j



20 40 60 80 100 120 140 160 180

rank k

0

0.2

0.4

0.6

0.8

1

||
A

 -
 A

k
||
/|
|A

||

Approximation Errors vs rank k

SVD

rSVD q=0

rSVD q=1

rSVD q=2

20 40 60 80 100 120 140 160 180

rank k

0

0.2

0.4

0.6

0.8

1

||
A

 -
 A

k
||
/|
|A

||

Approximation Errors vs rank k

SVD

rSVD q=0

rSVD q=1

rSVD q=2

20 40 60 80 100 120 140 160 180

rank k

0

0.2

0.4

0.6

0.8

1

||
A

 -
 A

k
||
/|
|A

||

Approximation Errors vs rank k

SVD

rSVD q=0

rSVD q=1

rSVD q=2

Sergey Voronin Randomized algorithms for low rank matrix factorizations 34/85



When Y = AΩ captures the range of A, then QQ∗A = A.

(1) R(A) ⊆ R(Q) (the range of A is a subset of the range of Q)

(2) A = QQ∗A

As k approaches the rank of A, the approximation QQ∗A approaches A.

A = U

[ k n−k

Σ1 0
0 Σ2

] [ n

k V ∗1
n−k V ∗2

]
.

Let Ω1 = V ∗1 Ω and Ω2 = V ∗2 Ω; set Y = AΩ and Q = orth(Y ). Then [HMT]:

‖(I −QQ∗)A‖ ≤ ‖Σ2‖2 + ‖Σ2Ω2Ω†1‖
2. (2)

Everything works if we can construct Q s.t. ‖QQ∗A−A‖ < ε:

B = Q∗A, ‖A−QB‖ < ε, (3)

We can form different approximate low rank factorizations from B:

B = ŨDV ∗ =⇒ A ≈ (QŨ)DV ∗

BP = Q̃R =⇒ AP ≈ (QQ̃)R
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Constructing Q given ε > 0 [Martinsson, V., 2015]

After first iteration, A(1) = A(0) − q1b1 = A− q1q∗1A = (I −Q1Q
∗
1)A. Next,

q2 ∈ ran(A(1)) = ran((I − q1q∗1)A) ∈ ran(I − q1q∗1) so q∗2q1 = 0 and
A(2) = A(1) − q2b2 = A− q1q∗1A− q2q∗2A = (I −Q2Q

∗
2)A. At the end of

iteration j, we have:

A(j) = (I −QjQ∗j )A and Bj = Q∗jA (4)

When ‖A(j)‖ < ε, we have Qj s.t. ‖QjQ∗jA−A‖ < ε.
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A block algorithm (add many vectors at a time)

At the end of iteration j, we have as before:

A(j) = (I −QjQ∗j )A and Bj = Q∗jA (5)

When ‖A(j)‖ < ε, we have Q s.t. ‖QQ∗A−A‖ < ε. Algorithm increases
matrix multi cost but decreases QR factorization cost.
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Ideas for very large matrices

Sergey Voronin Randomized algorithms for low rank matrix factorizations 38/85



Rank k pivoted QR factorization.

A P = Q S,
m× n n× n m× r r × n (6)

where P is a permutation matrix, Q has orthonormal columns, and S is upper
triangular and AP = A(:, Jc). We can stop after the first k iterations of the
algorithm, obtaining:

A(:, Jc) =
[ k r−k

m Q1 Q2

]
×

[ n

k S1

r−k S2

]
= Q1S1 +Q2S2. (7)

S1 =
[ k n−k

k S11 S12

]
and S2 =

[ k n−k

k 0 S22

]
, (8)

(i.e., S =

[ k n−k

k S11 S12

r−k 0 S22

]
, ) (9)

A(:, Jc) = Q1

[
S11 S12

]
+Q2

[
0 S22

]
=

[ k n−k

m Q1S11 Q1S12 +Q2S22

]
.
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Rank k ID and tsID factorizations.

C := A(:, Jc(1 : k)) = Q1S11.

Q1S1 =
[
Q1S11 Q1S12

]
= Q1S11[Ik S−1

11 S12] = C [Ik Tl],

where Tl is the solution to the matrix equation S11Tl = S12 which can be
solved for Tl a column at a time.

A ≈ CV ∗, where V ∗ =
[
Ik Tl

]
P ∗. (10)

The one sided ID of (rank k) is the approximate factorization:

A ≈ A(:, Jc(1 : k)) V ∗,
m× n m× k k × n (11)

where we use a partial column skeleton C = A(:, Jc(1 : k)) of a subset of the
columns of A and V is a well-conditioned matrix.

The two sided ID of (rank k)

A ≈ W A(Jr(1 : k), Jc(1 : k)) V ∗,
m× n m× k k × k k × n (12)

is obtained via two successive one sided rank k ID computations.
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Column norm preservation

Lemma

Let Ω̃ ∈ Rl×m be a matrix with GIID entries. Then for any a ∈ Rm we have

that E
[
‖Ω̃a‖2
‖a‖2

]
= l and V ar

[
‖Ω̃a‖2
‖a‖2

]
= 2l.

⇒ Suppose A is m× n and we draw an l ×m GIID matrix Ω̃. Suppose we

then form the l × n matrix Z = Ω̃A. Then, E
[
‖Z(:,j)‖2
‖A(:,j)‖2

]
= l.

Randomized algorithm O(mnk), [Voronin, Martinsson, 2015]
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Rank k CUR factorization.
The two sided ID allows us to construct the popular Column/Row skeleton
CUR (rank k) decomposition:

A ≈ C U R,
m× n m× k k × k k × n (13)

Suppose we compute a two sided rank k ID factorization forming the k × k
column/row skeleton A(Jr(1 : k), Jc(1 : k)). Set:

C = A(:, Jc(1 : k)) and R = A(Jr(1 : k), :)

We then set this to equal the factors C and R in CUR:

CUR = A(:, Jc(1 : k))UA(Jr(1 : k), :) ≈ A(:, Jc(1 : k))V ∗ (14)

where we take U to satisfy the system:

UR = V ∗, (15)

Interestingly, this scheme (non-randomized) often has better error than the
partial QR.
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Compare rank k SVD, QR, rand CUR errors
300× 300 matrix, p = 10, q = 2.
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◦ Errors can be far from optimal.

◦ For sparse A, ID and CUR require less storage than SVD.
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Storage sizes for full and sparse matrices
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(4) Application to inverse problems (model order reduction).
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Low rank SVD UkSkV
∗
k ≈ A for model reduction

Classic Tikhonov problem: x̃ = arg minx
{
‖Ax− b‖22 + τ‖x‖22 + λ‖Lx‖22

}
.

⇒ (A∗A+ τI + λL∗L) x̃ = A∗b

Multiply on the left by V ∗k and choose solution of the form x̃ = Vkỹ:

V ∗k (A∗A+ τI + λL∗L)Vkỹ = V ∗k A
∗b

⇐⇒
(
Σ2
k + τI + λV ∗k L

∗LVk
)
ỹ = ΣkU

∗
k b

(∵ V ∗
k A

∗
AVk = V

∗
k A

∗
kAkVk = Σ

2
k).

◦ Notice that x̃ has n variables and ỹ has k variables, with k � n.

◦ When λ = 0, equivalent to replacing A by UkΣkV
∗
k above:(

VkΣ2
kV
∗
k + τI

)
x̃ = VkΣkU

∗
k b

◦ Why set x̃ = Vkỹ? Since we want Ax̃ ≈ UkSkV ∗k x̃ ≈ b:

⇒ UkΣkV
∗
k x̃ ≈ b⇒ UkΣkv ≈ b⇒ set x = Vkv ⇒ UkΣk(V ∗k Vk)v ≈ b
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Low rank QB decomposition QkBk ≈ A for model reduction

Classic `1-min problem: x̄ = arg minx
{
‖Ax− b‖22 + τ‖x‖1

}
.

xn+1 = S τ
2

(xn −A∗(Axn − b))

A ≈ Qk Bk,
m× n m× k k × n ⇒ QkBkx ≈ b⇒ Qky ≈ b

◦ Set y = Q∗kb (x has n variables, y has k variables).

◦ Solve y = Bkx via `1 minimization (cheaper since Bk is k × n).

xn+1 = S τ
2

(xn −B∗k(Bkx
n − y))

◦ Improve solution using a few iterations with A and b in place of Bk and y.
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Construction of approximate L curves (1000× 1500, k = 300)

10
-2

10
-1

10
0

10
1

tau

0

20

40

60

80

100

120

||
A

x
 -

 b
||

RESIDUALS vs tau

true x

full ell2

full ell1

lrsvd

lrid

0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

TIMES for ell2 min curve

full ell2

rsvd ell2

0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

7
TIMES for ell1 min curve

full ell1

qb ell1

Sergey Voronin Application to model order reduction 48/85



Application to large scale problems [Voronin et al., 2015]

Break A into blocks, compress each block, get low rank SVD of each block,
then get overall low rank SVD of compressed version:

A =


A1

A2

...
AN

→M =


M1

M2

...
MN

 =


T(A1W

T
1 )

T(A2W
T
2 )

...
T(ANW

T
N )

⇒ A ≈


Uk1Σk1V

T
k1

Uk2Σk2V
T
k2

...
UkNΣkNV

T
kN

 ≈ UkΣkV
T
k

◦ Form Qr, Br of each block using matrix-vector operations with Mr.

◦ Form (k + p)× (k + p) matrix BrB
T
r column by column

(BrB
T
r = QTr ArA

T
r Qr)

BrB
T
r ej = QTr ArA

T
r Qrej ≈ QTrMrW

−T
r W−1

r MT
r Qej

◦ Compute eigendecomposition of BrB
T
r to get Ũ and D.

◦ Compute Σi,i =
√
Di,i

◦ Compute U = QŨ (since QQTA = QB ≈ A)

◦ Compute vj = 1
σj
ATUej ≈ 1

σj
W−1MTUej as columns of V .
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Sizes with k = 2000 for small and large matrix

◦ A1, dimensions (438674× 3637248), size is 115 GB

◦ M1, dimensions (438674× 3637248), size is 35 GB

◦ U1k , Σ1k , V1k , dimensions
(438674× 2000), (2000× 2000), (3637248× 2000), sizes are 7 GB, 30 MB,
55 GB (≈ 62 GB total)

◦ A, dimensions (2968933× 3637248), size is 3.2 TB (approximate, never
computed)

◦ M , dimensions (2968933× 3637248), size is 1 TB

◦ Uk, Σk, Vk, dimensions (2968933× 2000), (2000× 2000), (3637248× 2000),
sizes are 45 GB, 30 MB, 55 GB (≈ 100 GB total)

For small matrix (115 GB), SVD offers no compression (wavelet compression
better).
For large matrix (3.5 TB), SVD offers 30x compression.
Results in double precision; factor of 2 savings possible.
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Approximate Matrix-Vector Operations (smaller matrix)

A1x ≈ Uk1Σk1V
T
k1
x, AT1 y ≈ Vk1Σk1U

T
k1

, AT1 A1 ≈ Vk1Σ2
k1
V Tk1 .

Smaller matrix not so badly conditioned. Errors in A1x and AT1 y
approximations are very high. Errors in AT1 A1x approximation are acceptable.
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Approximate Matrix-Vector Operations (big matrix)

Ax ≈ UkΣkV
T
k x, AT y ≈ VkΣkU

T
k , ATA ≈ VkΣ2

kV
T
k .

Larger matrix is worser conditioned. Errors in Ax and AT y approximations
are high. Errors in ATAx approximation are very small.
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Observations

◦ ATA is well approximated via low rank SVD.

◦ A is not well approximated unless a high enough rank k is used.

Approximate Regularization Schemes [Voronin 2015]

(ATA+ λ1I + λ2L
TL)x̄ = AT b

Get the schemes:

(VkΣ2
kV

T
k + λ1I + λ2L

TL)x̃1 = VkΣkU
T
k b

(VkΣ2
kV

T
k + λ1I + λ2L

TL)x̂1 = AT b

Can get explicit error bounds when λ1 = λ and λ2 = 0:

‖x̄− x̃1‖2 ≤
σk+1

λ+ σ2
k+1

‖b‖2

‖x̄− x̂1‖2 ≤
σ3
k+1

λ
(
λ+ σ2

k+1

)‖b‖2
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Low rank SVD solutions for A
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Low rank SVD solutions for A
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Low rank SVD solutions for A
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Low rank SVD solutions for A with Laplacian
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Solution with more Laplacian smoothing and correction terms
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Comparison with (Schaeffer and Lebedev, 2013) at 50, 100 km
depth
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We recover similar features close to surface. Data sets for matrices are different
so direct comparison is not possible.
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Even more compression [with G. Nolet and D. Mikesell, 2014]

Use compressed system with automatic clustering:
UTk1A1

UTk2A2

...
UTkNAN

x =


UTk1b1
UTk2b2

...
UTkpbN

 or


Σk1V

T
k1

Σk2V
T
k2

...
ΣkNV

T
kN

x =


UTk1b1
UTk2b2

...
UTkN bN



By clustering matrix rows into blocks with overlapping nonzero patterns, very
high compression ratios are possible. For 3 million rows, we used about 20, 000
blocks. Need to calculate SVD components of individual blocks only, which
does not present computational challenge.
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Applications to image deblurring and denoising

Apply Wiener filter, then apply low rank inverse Toeplitz matrices:
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Using sparsity preserving CUR for image compression

◦ Take image matrix X (or well compressible portion).

◦ Apply 2D wavelet transform (CDF 97) to get w = WX.

◦ Apply thresholding to get w̃ = T(w).

◦ Apply low rank CUR to compress w̃: w̃ ≈ CUR.

◦ To reconstruct: X̃ = W−1(CUR).

Original and compression ratios 2, 4, 8 after pure wavelet compression.
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RSVDPACK

◦ Open source routines, for multi-core and GPU architectures, available at
https://github.com/sergeyvoronin.

◦ Can efficiently construct low rank QB, SVD, ID (A ≈ A(:, Jc(1 : k))V ∗),
and CUR (A ≈ CUR) factorizations in O(mnk) time.
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(5) Iterative regularization techniques: new algorithms useful for
recovering sparse and multi-scale solutions.

Sergey Voronin Regularization techniques 64/85



Regularization with sparse penalties

◦ f(x, p) = |x|p for p < 1 is not convex.

◦ f(x, 1) = |x| is convex.

◦ Interesting to consider ||x||1 =
N∑
k=1

|xk|

min{|x|+ |y| : a1x+ b1y = c1} ; min{x2 + y2 : a2x+ b2y = c2}

Want to minimize: ||Ax− b||22 + 2τ ||x||1 but ||x||1 is not smooth.

Soft thresholding

(Sτ (x))k = sgn(xk) max(0, |xk| − τ)

Sτ (b) = arg min
x

{
||x− b||22 + 2τ ||x||1

}
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Majorization-Minimization Approach for ISTA

Introduce two parameter G such that:

G(x, y) ≥ F (x) ∀x, y and G(x, x) = F (x)

Then set xn+1 = arg minxG(x, xn).

G(xn+1, xn+1) = F (xn+1) ≤ G(xn+1, xn) ≤ G(xn, xn) = F (xn)

Scale A (and b) so that ‖A‖2 < 1 and set:

G(x, xn) = ‖Ax− b‖22 + ‖x− xn‖22 − ‖A(x− xn)‖22 + 2τ‖x‖1
= ‖x− (xn +AT b−ATAxn)‖22 + 2τ‖x‖1 +K

Since Sτ (c) = arg minx ‖x− c‖22 + 2τ‖x‖1 we get the scheme:

xn+1 = arg min
x
G(x, xn) = Sτ (xn +AT b−ATAxn)

This is known as the Iterative Soft Thresholding Algorithm (ISTA) but it is
slow.

F (xn)− F (x̄) ≤ C1‖x0 − x̄‖22
n
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Fast-ISTA (Nesterov; Beck and Teboulle)

y0 = x0 , t1 = 1 , xn+1 = Sτ (yn −AT (Ayn − b))

tn+1 =
1 +
√

1 + 4t2n
2

yn+1 = xn +
tn − 1

tn+1
(xn − xn−1)

Much Faster Convergence

F (xn)− F (x̄) ≤ C2‖x0 − x̄‖22
(n+ 1)2

FISTA speedup trick above can be applied to different algorithms.

Other Approaches

◦ Coordinate Descent: Update one coordinate at a time.

◦ Dual Space: work with dual of ||x||1.

◦ Smooth Approximation: replace ||x||1 by something smooth.
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Dual Space

Definition

The dual of a norm || · || on RN is defined for any y ∈ RN as,

||y||∗ = max
x∈Rn,x 6=0

〈y, x〉
||x|| .

Lemma

The dual of ||x||1 =
N∑
k=1

|xk| is ||y||∞ = maxi [|yi|]

Dual space algorithm procedure:

(1)
[
min
x
f(x) s.t. Ax = b

]
→ L(x, y) = f(x) + yT (b−Ax)

(2) g(y) = min
x
L(x, y)→ ȳ = arg max

y
g(y)

(3) x̄ = arg min
x
L(x, ȳ)
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min ||x||1 s.t. Ax = b (DALM [Yang, Zhang. 2011])

L(x, y) = ||x||1 + yT (b−Ax)

Dual problem:[
max
y

bT y s.t. ||AT y||∞ ≤ 1

]
→
[
min
y
−bT y s.t z = AT y, ||z||∞ ≤ 1

]
Augmented Lagrangian:

min
x,y,z

Lµ(y, z, x) := −bT y − xT (z −AT y) +
µ

2
‖z −AT y‖22 s.t. ‖z‖∞ ≤ 1.

We can differentiate L with respect to each variable:

∇xLµ(x, y, z) = AT y − z
∇yLµ(x, y, z) = −b+Ax+ µA(AT y − z)
∇zLµ(x, y, z) = −x+ µ(z −AT y).

We alternate with the different updates and increase µ.
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Sparse Reconstruction

◦ Start with sparse x. Set y = Ax+ ν where A is a sample matrix, ν is
noise.

◦ Solve x̄ = arg minw ||Ax− y||22 + Φ(x) and compare x̄ to original x.

◦ Use continuation strategy for τ , starting close to ||AT y||∞ and decreasing
until ||Ax̄− y||2 ≈ ||ν||2.
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Image Reconstruction

◦ Start with vectorized image x.

◦ Obtain samples with sensing matrix A: y = Ax+ ν where ν is some
Gaussian noise.

◦ Recover x via x̄ = arg minx ||Ax− y||22 + Φ(x).
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Wavelet Image Denoising

◦ Start with vectorized image x sparse under some transform W .

◦ Obtain y = x+ ν where ν is some Gaussian noise.

◦ Denoise by solving w̄ = arg minw ||W−1w − y||22 + Φ(w). Set x̄ = W−1w̄.

Image Deblurring

◦ Start with vectorized image x sparse under some transform W .

◦ Obtain y = AHx+ ν where A is a sample matrix, H is a blur matrix and
ν is noise.

◦ Solve w̄ = arg minw ||AHW−1w− y||22 + Φ(w) and compare x̄ = W−1w̄ to
the original x.
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New work in iterative algorithm development

Variable Thresholding Function [with H. Woerdeman, 2012]

Vρ,τ (a) =


a− (2ρ− τ), a ≥ τ ;
2(a− ρ), ρ < a < τ ;
0, −ρ ≤ a ≤ ρ;
2(a+ ρ), −τ < a < −ρ ;
a+ (2ρ− τ), a ≤ −τ .

Notice that when ρ = τ above, Vτ,τ (a) = Sτ (a). Also, when ρ = τ
2
, the large

entries are not penalized.
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We proceed from soft to firm thresholding (convex to non-convex
optimization):

⇒

Iterative Variable Thresholding Algorithm

xn+1 = Vρn,τ (xn +AT b−ATAxn)

with ρ0 = τ and ρn → τ
2

as n→∞.

FIVTA

y0 = x0, xn = Vρn,τ (yn +AT (b−Ayn)),

yn+1 = xn +
tn − 1

tn+1
(xn − xn−1)
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Numerical Advantages of IVTA/FIVTA schemes

Faster Convergence:
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p-thresholding with R. Chartrand (2013)

(Sτ (x))k = sgn(xk) max(0, |xk| − τ)

(Rτ,p(x))k = sgn(xk) max(0, |xk| − τ |xk|p−1)

xn+1 = Rτ,p(xn +AT b−ATAxn)
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Convolution smoothing (with G. Ozkaya and D. Yoshida)

Approximate mollifier; smooth out absolute value |t| with bump function:

f(t) =
1

2πσ2
e

−t2
2σ2 , g(t) = |t| , erf(x) =

2√
π

∫ x

0

e−u
2

du

|t| ≈ (f ? g)(t) =

∫ ∞
−∞

f(s)g(s− t) ds = terf

(
t√
2σ

)
+

√
2

π
σe

−t2
2σ2
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F1(x) = ‖Ax− b‖22 + 2τ‖x‖1

≈ H1(x) = ‖Ax− b‖22 + 2τ
N∑
k=1

(
xk erf

(
xk√
2σ

)
+

√
2

π
σe

−x2k
2σ2

)
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∇x [H1(x)] = 2AT (Ax− b) + 2τ

{
erf(

xk√
2σ

)

}
k=1,...,N

∇2
x [H1(x)] = 2ATA+

4
√

2τ

σ
√
π
Diag

(
exp

(
− x2

k

2σ2

)
− x2

k

2σ2
exp

(
− x2

k

2σ2

))

Can generalize to non-convex min (p < 1).

Fp(x) = ‖Ax− b‖22 + 2τ

(
n∑
k=1

|xk|p
) 1
p

≈ Hp(x) = ‖Ax− b‖22 + 2τ

(
n∑
k=1

φpσ(xk)

) 1
p

where v(x) and w(x) depend on erf(x).
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Re-weighted least squares (with I. Daubechies, 2012, 2016)

Use a weighted two norm: ||x||2,w =

N∑
k=1

wkx
2
k. Weight based on xn:

||x||1 =
N∑
k=1

|xk| =
N∑
k=1

x2
k

|xk|
≈

N∑
k=1

x2
k√

(xnk )2 + (εn)2
=

N∑
k=1

wnkx
2
k

Iteratively Reweighted Least Squares MM Algorithm

∂

∂xk

(
||Ax− b||22 − ||A(x− xn)||22 + ||x− xn||22 + 2τ

N∑
l=1

wnl x
2
l

)
= 0

⇒ −2(AT b)k + 2(ATAxn)k + 2xk − 2xnk + 4τwnkxk = 0.

xn+1
k = (arg min

x
G(x, xn, wn, εn))k

=⇒ xn+1
k =

1

1 + 2τwnk

(
xnk + (AT b)k − (ATAxn)k

)
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Generalization of the Objective Functional

Instead of ||Ax− b||22 + 2τ ||x||1, we generalize to:

||Ax− b||22 + 2

N∑
k=1

λk|xk|qk for 1 ≤ qk ≤ 2

min(|x|q + |y|q)
1
q for q = 2,q = 1,q = 0.5.

||x||1 =

N∑
k=1

|xk| =
N∑
k=1

x2
k

|xk|
≈

N∑
k=1

x2
k√

(xnk )2 + (εn)2

|xk|qk ≈
x2
k

((xnk )2 + (εn)2)
2−qk

2
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Simple derivation of IRLS scheme

Using the Majorization-Minimization setup:

xn+1
k =

(
arg min

x
G(x, xn, wn, εn)

)
k

=
1

1 + qkλkwnk

(
xnk + (AT b)k − (ATAxn)k

)
wnk =

1

((xnk )2 + (εn)2)
2−qk

2

; εn = min

(
εn−1,

(
‖xn − xn−1‖2 + αn

) 1
2

)
for the generalized functional

arg min
x

{
‖Ax− b‖22 + 2

N∑
k=1

λk|xk|qk
}

for 1 ≤ qk ≤ 2
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Feature extraction for Geophysical models
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Expand model in a wavelet basis

Let w = Wx and x = (mj) = W−1w. Then Ax = b =⇒ AW−1w = b.

bi =
N∑
j=1

Ki,jmj =
N∑
j=1

Ki,j

(
N∑
k=1

W−1
j,kwj

)
=

N∑
j=1

N∑
k=1

Ki,jW
−1
j,kwj

Hence, for the discretized minimization problem, we can solve:

w̄ = arg min
w

{
‖AW−1w − b‖22 +

N∑
k=1

θ(wk, λk)

}
; x̄ = W−1w̄
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YAMPA Support Detection (with A. Lodhi and W. Bajwa,
2016)

CoSaMP type of method with matrix dependent threshold. Threshold
derived based on assuming high probability of correct support in first iteration.

Worst-Case Coherence: µ(A) = max
i,j;i6=j

∣∣〈ai,aj〉∣∣, and

Average Coherence: ν(A) =
1

n− 1
max
i

∣∣∣ ∑
j:j 6=i

〈ai,aj〉
∣∣∣, (16)

Threshold: λs = c1µ‖rs‖2 + c2ν
√
k̂‖rs‖2, (17)
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Reconstruction errors for 1000× 1000 Gaussian random matrices with rapid
singular value decay and 0 and 300 approximately correlated columns.
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Thanks!
Regularization, wavelets, big matrices. Low rank matrix approximations can be
computed efficiently using existing software and applied to various inverse
problems. Various open problems.

◦ S. Voronin and P.G. Martinsson. RSVDPACK: An implementation of
randomized algorithms for computing the singular value, interpolative,
and CUR decompositions of matrices on multicore and GPU
architectures, 2016.

◦ S. Voronin and P.G. Martinsson. Efficient algorithms for CUR and
Interpolative Matrix Decomposition, 2016.

◦ S. Voronin and I. Daubechies. An iteratively reweighted least squares
algorithm for regularization with sparsity constraints, 2016.

◦ P.G. Martinsson and S. Voronin. A randomized blocked algorithm for
efficiently computing rank-revealing factorizations of matrices, 2015.

◦ S. Voronin, D. Mikesell, and G. Nolet. Compression Approaches for the
Regularized Solutions of Linear System from Large-Scale Inverse
Problems, 2015.

◦ S. Voronin, D. Mikesell, I. Slezak, and G. Nolet. Solving large
tomographic linear systems: size reduction and error estimation, 2014.
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