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(1) Some applications of my work: geotomography, imaging and
compression, sparse signals, data fitting.
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Geotomography delay time inverse problem

Goal: to create a 3D map of the interior structure of the Earth using data
from earthquakes. Existing spherically symmetric model vg(r) and delay times
0T; used to construct corrections duv(r).

=) : particle motion
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dr dr
6T,~:Ti—Ti°:/ ——/ ——
r, v(r) R? vo(r)

By Fermat’s principle, travel time of ray is stationary with respect to small
changes in ray path, so we can use the reference path RY:

5; (D)
5T, = / s (x(s)) ds ~ — 5"2’(” ds:/ g ) 22 g

RY Yo (r) 5:(0) vo(r)

We typically replace —uvy ' (r) by a sensitivity kernel K(r).
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Linearization to Ax = b (with error) for m x n matrix A

N N
((5T)Z = Zl‘j /[K(T)]i,de — BZ = ZKi,jmj — I_): Azx
j=1 Jj=1

= Az = b with Ai’j = Ki,j, T = % and BZ = [((ST)Z]
j

Matrix rows correspond to source-receiver pair kernel

Matrix columns correspond to coordinate system grid

E.g. take set of radii (levels) and at each level project sphere onto cube.
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Solving Az = b to recover useful features.

o A has rapid decay of singular values, rhs noisy: need least squares +
regularizer.

o Possibility to include correction terms.

o Need to pick up multi-scale resolution components in x.

o Least Squares
E:argmin{HAx—ng} = ATAz=ATb

= I= VDiag(i)UTb

[oF
Very large norm for small o;.
o Tikhonov Regularization
Ty = argmin {[|[Az — 0|3 + A[z[3} = (ATA+ADz\=A"D

gi

o2+ A

—  Z, = VDiag( Y™'s

Tikhonov minimization filters the effects of singular vectors
corresponding to small singular values.
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Variance of Solutions
We define:

Cov(z,y) = E[(z — E[2])(y — E[y])] ; var(z) = Cov(z,z) = E[(z — E[«])’]

Assume b = b+ e (the true data plus noise). Assume the two are uncorrelated
and that Ele] = 0.

var(e) = E[(e —Ele])(e —Ele])"] = Elee”] = v°T
var(b) = E[(b—E[p])(b—E[D])"] = Elee”] = v*I

For the least squares solution:

1/2

(2
[| var(z)[|z = CTZ

For Tikhonov solution:

2
_ 2 v
var(z < —
var(e)l < 2
Regularized solutions are not as sensitive to noise in b and to approximation
of A.

v
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Tikhonov regularization with smoothing

7 = argmin {[| Az — b3 + A lall3 + | L3}

T T

A b1 |7 A A A b
arg min VAl xz— |0 = [V 1] VAl z= |Vl 0
2y 0] |, VAL] VAL VAL |0

Smoothness controlled by Laplacian operator L

Including correction terms.

{z,9} = gmn{H {61 g} ﬁ - [3]

where C' is a matrix of correction columns and D = el is a matrix of damping
terms to control the size of the correction solution portion v.

2
+ A l2]l3 + A2||L$||3}
2
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Representation of model in wavelet basis (with F.J. Simons,
G. Nolet, et al., 2011, 2013)

Let w= Wz and x = W lw. Then Az = b — AW lw =0b.
N
b= =3 (it ) = 33 R
j=1 j=1 k=1

For orthogonal transform W one has ||Wz||3 = ||z||3 and hence minimizing
| Az — b||3 + \||Wz||3 is equivalent to minimizing || Az — b||3 + \||=||3. For
sparse minimization, we use a sparse penalty in the wavelet domain, e.g.:

p = argmin {[|[ AW 'w —b]5 + 27|w|} ; z=W 'w

Compactly supported wavelets

wk n( ) = "‘%( "“t - nb)

ke€Z nel
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Sparse and wavelet based regularization

o Different constraints on the solution are possible. E.g. sparsity (few
nonzeros) with respect to a suitable basis.

z1 = argmin {|[Az —b[3 + 7llallz + Al L3}
72 = argmin {|l Az — b]3 + rllall}
W3 = argrrgn {||AW_1’LU — b3+ Tllwlli} 5 s = W hws

o These opt problems can be solved via CG and iterative thresholding:

(A"A+ 7T+ XL"L)z1 = A™b
"t = Sz (@" + A*(b— Aw™))

o Need be able to apply methods with very large matrices (several TB).
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Sample global and local reconstructions (68 KM, 135 KM)

S F o

. . |
40 o
run?_Ipcal0ogs| run7_| calﬂ'lss‘ S:
1107 120" 130" 140" 150" 160" 110 120" 130" 140" 150" 160"

004 -002 000 002 004

These models consist of 3 million variables; required significant amounts of
large cluster computer use.
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Regularization parameter estimation

Need to find optimal regularization parameter 7 to use.

final residuals vs tau

. ) 0.00025
0 500 1000 1500 taumax(A' b)

percent errors vs tau curvature of log log plot
0

‘median

percent error

AN
1 0.00025 1 0.00025
tawmax(A' b) tau/max(A' b)

e=log|z-|| and p=Ilog| Az, —b]|.

= Requires several runs with possibly very large matrix A.
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Sparse signals

o Can one identify the support of a sparse signal from a limited number of
measurements?

E.g. intermittent bird singing in the forest, sound blurred by strong wind.
(One wants to find the times when a particular noise is made) = Az = b.

SPARSE SIGNAL

o Can do frequency filtering with FFT but this will not tell you where in
time a particular frequency occured.
o Typically, can phrase this as a linear problem Az = b s.t x is sparse and

would like to identify the support of x.
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Denoising and deblurring of images

S PO 2 - EE TS ¥
; L“b _” "-‘1. .

Denoising with Wavelet thresholding:
o=TWz]=>z=W o

Deblurring with FFT and filter:

g(z,y) = flz,y)*h(z,y)+n(z,y)
G(kzaky) = F(kzvky)H(kIaky)+N(kz7k’y)
Fka ky) = Y (ke ky)G(ka, ky)
For noisy and blurred images, iterative de-convolution can be used.
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Known blurring source

When the blurring source is known (or can be estimated) a linear optimization
problem can be setup. Images can be blurred via convolution:

(ej,m,n),gaussian2d(

Deblurring done in terms of a least squares problem:
Bz =y+n— & =argmin{||Bz — y|* + &(z)}

o What to pick for ®(x)? How to estimate B when the blur source is
unknown?
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High ratio image and video compression

o Take image matrix X (or well compressible portion).

Apply 2D wavelet transform (CDF 97) to get w = WX.

[e]

[e]

Apply thresholding to get w = T(w).
o Further compress @. Use W™'(-) to reconstruct.

How to compress @ further?

Original and compression ratios 2,4, 8 after pure wavelet compression.
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Nonlinear model fitting

Fitting set of points (t1,41),- ., (tm,Ym) with a nonlinear model. E.g.
F(z,t) =1 eXp( @) + z4. Penalty: g(z) = 3 |r(z)|”.

—actual
—fit
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Newton and Gauss Newton
Fitting set of points (¢1,41), ..., (tm,Ym) to a nonlinear model. Let
g(@) = glr(@)|? with ri(z) = yi — F(z, ;).
Model fitting min problem: Z = arg min, g(z).
Setting Vg(z) = 0, yields with Newton’s method:

fn+1 _ ZE” _ I:VZg(jn)} -1 Vg(in)
Expanding the gradient and Hessian of g yields:

Zrl )Vri(x) = Jr(x) where J = J[r(z)]
ZVn )Vri(z)" + Zrz )W2ri(z) = JTJ + T(x) ~ JTJ.

T(z) = Y7, ri(z)V?ri(z) and J[r(z)] = Vri(z)" = =V F(z,t;)".

Gauss-Newton Method: z"T! = 7" — [Jg]n] -t Jgrn is easy but not stable!
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Improvements of Gauss-Newton method

o Introduction of step size (“a,”)

1
“ntl - T T
" =2" — an [Jn Jn] I Tn

an = argmin g(Z" — as™) with JEJns™ = Jr,.

o Regularization (Levenberg-Marquard method): J;I J,y = J;Lr, replaced
by £2 norm penalty: (JLJ, +A)§ = JLr,. (Prof. Mikesell’s group
looking into this).

o Other types of regularization here? Methods for parameter estimation of
A? Previous tools apply to this non-linear problem.
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(2) Matrix compression. The matrices in applications can be very
big!

Sergey Voronin Matrix compression 21/85



The big matrix A
In Geotomography application, A is of size 2968933 x 3637248 (=~ 2 — 3 TB in
sparse format). It’s too big. We divide into 20 blocks:

Ay
Az
A =
Az
Each block is between 50,000 and 500, 000 rows. Can do block matrix
operations:

T

Aq Az Ay Y1
AQ AQ.T A2 Y2 P
A= | | = Az=| . ; ATy=| . =D ATy,
: . . . j=1
Ap Apz Ap Yp
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Idea for compressing blocks of A

The blocks of A in original form are too big. Want to compress them in a
simple way. We appeal to Wavelet image compression:

z~ W (Thr(Wz))
The original image is approximately equal to the inverse transform of the
thresholded forward transform of the image.

Original; retain 15% of largest (by absolute value) wavelet coefficients; retain
3%. By thresholding, we mean the hard thresholding function:

Hy(z)={zif |[z]| >a and 0if |z| < a}

To see if this works for the matrix, we apply it to some rows of A.
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Wavelet compression for kernels
Left: z ; Right: W™ (Thr(Wz)) retain 5% largest coefficients

% error

% coefficients retained

We have to retain about 25%.
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Applying wavelet compression to matrix vector ops [with D.
Mikesell, G. Nolet, 2015]

o] Thr(erT)T
r2 Thr(Wri)T

A=| . | =>M= , = Thr(AW") =~ AWT
Tm Thr(Wri)T

We can then approximate the operations Az and ATy with the matrix M.
Mz~ AWTz and MTy~ (AWT)Ty=wA"y

we obtain the approximation formulas:

Az~ MW Tz and ATy~ W MTy

To test how well this works, we need to write code to form A, then form M
and to be able to apply the wavelet transforms.
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Result for one-matrix case

Sizes: A; (438674 x 3637248) is 115 GB; M; (438674 x 3637248) is 35 GB
Az versus MiW ~Ta; ATy versus WM y; and AT Ayx versus
W=t MT MW =Tz for 50 random vectors x and y.

% ERRORS

[ 10 20 30 40 50
vector #

Errors in A1z and A{y about 8%. Errors in AlTAlx about 15%. Now we
compare the solutions to:

(ATAL +ADzy = ATb and (W 'MIMW ™" 4 A)ze = W ' M{b

What really matters is the error in the operation AT A;x.
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NORMS

IIx_nll

50 100 200 250 300

150
iteration #

CHI2s

50 100 150 200
iteration #

250 300
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Compression works well but only for individual blocks

Error at one depth about 5%; error at all depths about 12% (similar to AT A;x
error) ; consequence of Tikhonov regularization

Max=10.9303 3 15 00 15 3

Max=11.0029 3 -15 00 15 3
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Using the whole system of 3 million rows

T

A Az Ay Y1
Ay Asxx Ay Y2 20
A=| . | = Az=| . ; Aly=| . =2 ATw
. . : . j=1
Ao Az Ao Y20
approximated via:
Thr(A,WT) MW Ty
Thr(AWT) MW T - 00
M= : — Az~ : ;o ATy~ WMy,
: : j=1
ThT(AQ()WT) M20W7T$

For this, we first form the 20 submatrices M1, ... M2 by transforming and
thresholding the rows of Ai,..., Ay (a lot of i/0).

Not enough compression for a ~ 2 TB matrix

Want to take advantage of rapid singular value decay of A.
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(3) Low rank decompositions and randomized algorithms for
efficiently computing them.

J
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Low Rank SVD

1
0
A = [ul...ur]

=~ UkEka* = [ul e

with k << r < min(m,n).
o A is sparse m X n
o Uy is dense m X k
o X is diagonal k x k

o Vi is dense n x k

0 07
o) 0 1
: L | =Usv”
0 o, vr
o1 0 0 ’U*
0 o2 0 L
w] |, z
0 0 o] LUF

o = if k is much smaller than min(m,n) one gets very substantial

savings.
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Randomized algorithm O(mnk), [Halko, Martinsson, Tropp]

o Aismxn

o Upismxk, UiUp,=1; Viyisnxk, ViVie=1; 3 is k x k.

Sample range of A with k + p lin. indep. vectors, so that QQ* A ~ A.

o Draw an n x (k+ p) Gaussian random matrix €.
Omega = randn(n,k+p)

o Form the m x (k + p) sample matrix Y = AQ.
Y = A * Omega ; ranY ~rand

o Form an m X (k + p) orthonormal matrix @ such that Y = QR.
[Q, R] = qr(Y) ;ran@ =rand

o Form the (k + p) x n matrix Q" A.
B=0Q *xA

o Compute the SVD of the smaller (k 4 p) x n matrix B: B = USV*.
[Uhat, Sigma, V] = svd(B)

o Form the matrix U = QU
U=Q * Uhat ; QQ"A=x A

o Uy =U(,1:k),5, =X1:k,1:k),Vi, =V(;,1:k).
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Low rank SVD via SVD of (k + p) x (k + p) matrix

SVD of B = Q" A which is (k + p) X n is expensive, but we can work with
BB* = Q*AA*Q which is (k + p) x (k + p).

k
B=UXV" = Zaiuivf and Bv; = ou;

=1
From which it follows that we can extract the eigenvectors u; from BB™*:

* k

k k k
BB* _ Lk P _ T S S 2k
= O;UiV; U]u]’Uj = 0;,0;U;V; ’U]’LLj = O; Ui,

i=1 j=1 i=1

i,j=1
For the right eigenvectors v; we can use:
BU=VSU'U=VE = BUL'=V
. 1 .
— v =Ve=(BUS "e; = —B u;

g4

Power sampling scheme

(AA")7A = UxPrty~
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Eckart-Young Thm ; Power Sampling (AA*)9AQ, q > 1.
A an m x n matrix. For 1 < k < min(m,n), the truncated SVD Aj, gives:
min(m,n) 1/2

JA= Akl =0x1 5 [A=Axlr={ > o (1)

j=h+1

é min(m,n)

. ko2 )

j=k+1

min(m,n)
E|A - UgSiVilla = oppr + (LD o2
kLkVi |2 = kt1 §
p Jj=k+1
E Approximation Errors vs rank k | Approximation Errors vs rank k | Approximation Errors vs rank k
——sVD ——SVD ——SVD
——rSVD g=( N ——rSVD = ——rSVD g=
0.8 ——1SVD g=1 0.881 ——1SVD g=1 ——rSVD g=1|
_ —r8VDg=3 \ —r1SVDg=3 —rSVD g=3
< o6 < o6 <
= = =
< 04 S o 04 <
02 02
20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180

rank k rank k rank k
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When Y = AQ captures the range of A, then QQ*A = A.
(1) R(A) C R(Q) (the range of A is a subset of the range of Q)

(2) A=QQ"A
As k approaches the rank of A, the approximation QQ*A approaches A.

k n—k n

o > 0 k ‘/1*
SR R R
Let Q1 = Vi and Q2 = V5'Q; set Y = AQ and Q = orth(Y). Then [HMT]:

I = QA < |IS2||* + | 229200, (2) |

Everything works if we can construct @ s.t. [|[QQ*A — Al < e

[B=Q'A [4-QB|<e (3)

We can form different approximate low rank factorizations from B:

B=UDV* = A=~ (QU)DV*

BP=QR = AP~ (QQ)R

Randomized algorithms for low rank matrix factorizations
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Constructing @ given ¢ > 0 [Martinsson, V., 2015]

1)
)
®)
4
(5)
(6)
@
(®)
(

(

9)
10

Q=[];Bo=[]; Ag=A;j=0;
while [|[AD|| > ¢

j=ji+1 ‘

Pick a unit vector q; € ran(AU-D).

b; = qu(rl)

Q; =[Qj-1qj]

_ | Bia
e—[ %]
AW — AG-D _ a;b;

end while
k=j.

After first iteration, A = A©® — g6y = A — q1gf A = (I — @Q1Q7)A. Next,
g2 € ran(AD) = ran((I — qi¢i)A) € ran(I — q1¢7) so ¢3q1 = 0 and
A® = AW _goby = A — qigf A — a3 A = (I — Q2Q3)A. At the end of

iteration j, we have:

AY) = (1 -Q;Q))A and B; =Q;A (4)

When ||[A9|| < ¢, we have Q; s.t. |Q;QjA — Al < e.

Sergey Voronin
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A block algorithm (add many vectors at a time)

(1) fori=1,2,3,...

(2) Q; = randn(n, b).

(3) Q; = orth(AQ;).

(4) forj=1:P

(5) Q; = orth(A*Q;).

(6) Q; = orth(AQ;).

(7 end for

®) Q: = ortn(Q; - ¥/7} Q,Q;Q))
(9) B; = QA

(10) A=A_QB;

(11) if ||A|| < ¢ then stop

(12) end while

(13) Set Q=[Q; --- Q;] and B=[B} --- B}J*.

At the end of iteration j, we have as before:

A9 = (1-Q;Q))A and B; = QA 5)

When [|AY || < ¢, we have Q s.t. |QQ*A — A|| < e. Algorithm increases
matrix multi cost but decreases QR factorization cost.

Sergey Voronin
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Ideas for very large matrices

[A1-| [Q131-| |—Q1 0 0 0B
A |2 QB2 _ [0 Q 0 0B,
Az Q3Bs 0 0 Q 0]]|Bs
AR I

We then perform QB factorizations on the blocks of the B matrix:
M = Ej ~ QB ; M@= EZ] ~ Qs4Bss
Finally, we perform a QB factorization on:
M® = [S;ﬂ ~ Qu234B1234

It follows that:

Q 0 0 0 Q 0 0 0

A~ 0 Q 0 0 [le 0 } [312} ~ 0 Q 0 0 {le 0
0 0 Q 0 0 Qaa) [Bsa 0 0 Q O 0 Qa
0 0 0 Q 0 0 0 Q

Q®QPQWBM = QB

] Qi234B1234
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Rank £ pivoted QR factorization.

A P
mxn nxn

Q

m Xr

s,

TXn

(6)

where P is a permutation matrix, ) has orthonormal columns, and S is upper
triangular and AP = A(:, J.). We can stop after the first k iterations of the

algorithm, obtaining:

r—k

n

A o) = m [ Q1 Q2 ]x :k { gz ] = Q151+ Q28 (7)
k n—k k n—k
Sl = k [ S11 512 ] and SQI k [ 0 522 ], (8)
k n—k

Ges= " [ o | o)

A, Je) = Q1S Si2] +Q2[0 S

k n—k
= m [ Q1511 Q1512 + Q2522 }

Sergey Voronin
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Rank k ID and tsID factorizations.

C = A(:,Jo(1:k)) = Q1511-
lel = [lell Q1512] = lell[lk 5;11512] = C[Ik Tl]7

where T} is the solution to the matrix equation S117; = Si2 which can be
solved for 7} a column at a time.

A= CV*, where V'=[I, T P" (10)
The one sided ID of (rank k) is the approximate factorization:

A A(,Je(1: k) V7,

mXxn m X k kxn

Q

(11)

where we use a partial column skeleton C = A(:, Jc(1 : k)) of a subset of the
columns of A and V is a well-conditioned matrix.

The two sided ID of (rank k)

A~ W AU k), (k) V*

mxn m Xk kxk kxn (12)

is obtained via two successive one sided rank k ID computations.
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Column norm preservation

Lemma

Let Q e fom be a matriz with GIID entries. Then for any a € R™ we have
that E [”Qaw} =1 and Var [HQGHZ] =2l.

llall? llall®

= Suppose A is m x n and we draw an [ X m GIID matrix 2. Suppose we

then form the I x n matrix Z = QA. Then, E [%] =1.

Randomized algorithm O(mnk), [Voronin, Martinsson, 2015]

Input : A € R™*" arank parameter k < min(m,n), and an oversampling parameter p.
Output: A column index set J and a matrix V € R™¥ (such that A = A(:, J(1: k))V*).

1 Construct a random matrix Q € RE+P)Xm with ii.d. Gaussian entries;
2 Construct the sample matrix Y = QA;

3 Perform full pivoted QR factorization on Y to get: YP = QS;

4 Remove p columns of Q and p rows of S to construct Q and Sy;

5 Define the ordered index set J via I(:, J) = P;

6 Partition 51: 511 = S](:7 1: k‘)7 512 = 51(17k +1: n);

TV=P[l S5'Su"
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Rank k& CUR factorization.

The two sided ID allows us to construct the popular Column/Row skeleton
CUR (rank k) decomposition:

A =~ C U R,

m X n mxk kxk kxn (13)

Suppose we compute a two sided rank k£ ID factorization forming the k x k
column/row skeleton A(J,(1: k), Je(1: k)). Set:
C=A(,Jc(1:k)) and R=A(J.(1:k),:)
We then set this to equal the factors C' and R in CUR:
CUR = A(:,Jc(1: k) UAJ-(1:k),:) ~ A(:, Jo(1 : k))V™ (14)
where we take U to satisfy the system:
UR=V", (15)

Interestingly, this scheme (non-randomized) often has better error than the
partial QR.
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Compare rank £ SVD, QR, rand CUR errors
300 x 300 matrix, p = 10, g = 2.

o ERRORS vs k s ERRORS vs k
SvD. —sw
ek RSV o RSVD)|
—ar ——ar
AID AID
——FROUR 08 —— RCUR)
14p
07
12F
06
s
05
o8-
04
06
03
04t
02
o2 01

0
o 50 100 150 200 250 20 a0 60 80 100 120 140 160 180 200

o Errors can be far from optimal.

o For sparse A, ID and CUR require less storage than SVD.
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Storage sizes for full and sparse matrices

25210° TOTAL NONZEROS (300 x 300, FULL MATRIX) <104 TOTAL NONZEROS (300 x 300, 0.5% SPARSE MATRIX)

#of elements
# of elements

50 100 150 200 50 100 150 200
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(4) Application to inverse problems (model order reduction). J
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Low rank SVD U,S;V,* =~ A for model reduction
Classic Tikhonov problem: & = arg min, {||Az — b[|3 + 7||z||3 + A||Lz[3}.
= (A"A+7I+AL"L)z = A"b

Multiply on the left by V7 and choose solution of the form & = V,3:

VEAA+TI+ AL L) Vi) = ViA™D
= (SR+TI+AVELLVR) g = XU
(CVEATAVy, = VE AL ALV, = £7).

o Notice that & has n variables and § has k variables, with k < n.

o When A = 0, equivalent to replacing A by UrXi V) above:
(ViZiVi +71) & = Vi X Ugb

o Why set & = Vi4? Since we want AT ~ UpSi V' =~ b:

= UpliViz b= Uplprv = b=set x = Vv = UkEk(Vk*Vk)v ~b
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Low rank QB decomposition QB ~ A for model reduction
Classic £1-min problem: Z = argmin, {||Az — b||5 + 7|z[|1 }.

n+1_S

x (z" — A" (Az" — b))

z
2

A ~ Qk Bk?
mXxn mxk kxn

o Set (z has n variables, y has k variables).

o Solve y = Bz via ¢1 minimization (cheaper since By is k X n).

2 =85 (2"~ Bi(Bua" )

o Improve solution using a few iterations with A and b in place of By and y.
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Construction of approximate L curves (1000 x 1500,

120 RESIDUALS vs tau
== true x
100 —full ell2| |
——full el
—Irsvd
80 ——1rid

=)
'

x 60
<

40

20

10' 10° 10" 102
tau
TIMES for ell2 min curve ) TIMES for ell1 min curve

[ul et
Mlab el

k = 300)
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Application to large scale problems [Voronin et al., 2015]

Break A into blocks, compress each block, get low rank SVD of each block,
then get overall low rank SVD of compressed version:

A M, T(AWT) Uk, Eie, Vi

Ay M, T(AWY) Ukg Zkes Vi .
A=| . | > M= . = . = A= . ~ UrXi Vi

An My T(ANWE) Uk n Zkn Vi

o Form Q,, B, of each block using matrix-vector operations with M.

[e]

Form (k + p) x (k + p) matrix B,B’ column by column
(BrBf = Qr ArATQr)

BB/ ej = QF Ar AL Qre; ~ Qr MW, "W, M Qe

[e]

Compute eigendecomposition of B,BI to get U and D.
Compute ¥;; = /D
Compute U = QU (since QQTA = QB = A)

Compute v; = %ATUej ~ %W‘lMTUe]- as columns of V.
J J

[e]

[e]

[e]
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Sizes with k = 2000 for small and large matrix

o Ai, dimensions (438674 x 3637248), size is 115 GB
o M, dimensions (438674 x 3637248), size is 35 GB

o Ui, %1, V1, dimensions
(438674 x 2000), (2000 x 2000), (3637248 x 2000), sizes are 7 GB, 30 MB,
55 GB (= 62 GB total)

o A, dimensions (2968933 x 3637248), size is 3.2 TB (approximate, never
computed)

o M, dimensions (2968933 x 3637248), size is 1 TB

o Uk, S, Vi, dimensions (2968933 x 2000), (2000 x 2000), (3637248 x 2000),
sizes are 45 GB, 30 MB, 55 GB (= 100 GB total)

v

For small matrix (115 GB), SVD offers no compression (wavelet compression
better).

For large matrix (3.5 TB), SVD offers 30z compression.

Results in double precision; factor of 2 savings possible.
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Approximate Matrix-Vector Operations (smaller matrix)
A1z~ U, Sk, Vik , ATy & Vi, S, U, AT Ay = Vi 57, Vi

SINGULAR VALUES % ERRORS
50 T T ; T

T =
AST
AT A

40 1 60 1

20

10

0 500 1000 1500 2000 o 10 20 30 40 50
vector #

Smaller matrix not so badly conditioned. Errors in Ajz and ATy
approximations are very high. Errors in AT Ajz approximation are acceptable.
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Approximate Matrix-Vector Operations (big matrix)
Az = UpSi Vil z, ATy =~ Vi UL, ATA = V22 VT.

SINGULAR VALUES % ERRORS

700

600 1

500 1

400 4

300 1

200 1

100} 1

0 500 1000 1500 2000 0 10 20 30 40 50
vector #

Larger matrix is worser conditioned. Errors in Az and A”y approximations
are high. Errors in AT Az approximation are very small.
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Observations

o AT A is well approximated via low rank SVD.

o A is not well approximated unless a high enough rank k is used.

Approximate Regularization Schemes [Voronin 2015
(ATA4+ T+ XL"L)z = Ab
Get the schemes:

(VeZiVil + M+ X LT L)y = Vi ShUlb
(VeZiVil + AT + X LT L), = A™b

Can get explicit error bounds when A1 = A and Ay = 0:

Uk+1
Iz — 21]]2 < [16]]2
Aopi,y
12— dulls < —=ZE o,

T AN +oR)
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Low rank SVD solutions for A

Maxe21.152 5 25 00 25 5

Max-9.1325 5 25 00 25 5 Maxilsaes 5 25 o0 25 5
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Low rank SVD solutions for A

dopin profie

epth profe
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Low rank SVD solutions for A

NORMS

2000 T T T T T T

1x_nll

20 40 60 80 100 120 140 20 40 60 80 100 120 140
iteration # iteration #

AVG CHI2s for RSVD solutions

mean chi2

rsvd solution 1 & rsvd solution 2
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Low rank SVD solutions for A with Laplacian

Max-8.5831 5 25 00 25 5

Max6.5072 5 25 00 25 5 Maxosa 5 25 o0 25 5
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Solution with more Laplacian smoothing and correction terms

SOLUTION NORM SOLUTION CHI2

chi2

50 100 150 200 250

50 100 150 200 250
iteration

iteration

Max=3.7114 . .
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Comparison with (Schaeffer and Lebedev, 2013) at 50,100 km
depth

125" 180
FT-Tomooosokm g o5 o0 1 ey s s s

SL2013sv 0050km

s e
45 0 45 90 g5 1807 195 90 45

a0 -5 00 15 o
v (%)

FFT-Toma 0100km

- = 0
45 0 45 0 135 180 195 90 4 450 45 90 135 180135 90 45
@0 s 00 05 a0 s 00 15 30

30
ovsivs 04) —— e — s )

We recover similar features close to surface. Data sets for matrices are different
so direct comparison is not possible.
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Even more compression [with G. Nolet and D. Mikesell, 2014]

Use compressed system with automatic clustering:

Ui Ay Ui, by S, Vis Ui by
Ui, Az Uy, b2 Sko Vi Ui, ba
. T = . or . T = .
Ul AN Ui by Skn Vi Ui b

By clustering matrix rows into blocks with overlapping nonzero patterns, very
high compression ratios are possible. For 3 million rows, we used about 20, 000
blocks. Need to calculate SVD components of individual blocks only, which

does not present computational challenge.
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Applications to image deblurring and denoising

7 e = 3 e
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Using sparsity preserving CUR for image compression

o Take image matrix X (or well compressible portion).

Apply 2D wavelet transform (CDF 97) to get w = WX.

[e]

[e]

Apply thresholding to get w = T(w).

[e]

Apply low rank CUR to compress w: @ ~ CUR.
o To reconstruct: X = W~*(CUR).

Original and compression ratios 2,4, 8 after pure wavelet compression.
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RSVDPACK
o Open source routines, for multi-core and GPU architectures, available at
https://github.com/sergeyvoronin.

o Can efficiently construct low rank QB, SVD, ID (A ~ A(:, J.(1: k))V™),
and CUR (A = CUR) factorizations in O(mnk) time.

100 RUNTIMES for 6kx12k matrix on CPU 100 RUNTIMES for 6kx12k matrix on GPU
””””””””” --svd -~ svd
- o
) - par 80 - par
~+—rsvd cpu —#rsvd gpu
——brsvd cpu| = brsvd gpu|
z ® fid cpu ok fidgpu |
[ I bridcpu [* @ brid gpu
2 _ Pl 2 P
= e fw
20 - 20
o
0 s 1000 1500 2000 250 3000 0 500 100 1500 2000 2500 3000
rank k rank k
RUNTIMES of MAT MULT for n x n matrices RUNTIMES of QB schemes for k=800, nxn matrices

/ / ——qb cpu =2
9 ~*~gb cpu g=4|
/ gb gpu g=0|
o gpu a=2|
ab gpu a=4]

05 T 5 2 25
dimension n x10* dimension n x10*
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https://github.com/sergeyvoronin

(5) Tterative regularization techniques: new algorithms useful for
recovering sparse and multi-scale solutions.
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Regularization with sparse penalties

o f(z,p) = |z|? for p < 1 is not convex.
o f(x,1) = |z| is convex.
N

o Interesting to consider ||z||; = Z ||
k=1

min{|z| + |y : a1z + by =1} ; min{z® +y° : a0z + boy = o}

&

Want to minimize: ||Axz — b||3 + 27||z||1 but ||z||1 is not smooth.

Soft thresholding

(Sr(2))r = sgn(zx) max(0, [zx| — )
S-(b) = argmin {||z — bl[3 + 27||z|: }
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Majorization-Minimization Approach for ISTA

Introduce two parameter G such that:
G(z,y) > F(z) Yz,y and G(z,z) = F(z)
Then set """ = arg min, G(x, 2™).

G(In+l,$n+1) _ F(xn-!—l) < G(xn+17xn) < G($"7x") = F(a:")

Scale A (and b) so that ||Al|2 < 1 and set:

G(z,a") = [Az—bl3+ |z —2"|3 — Az — 2™)||5 + 27|
= |lz— (" +ATb— AT Az™)|3 + 27|z|L + K

Since S-(c) = argmin,, ||z — ¢||3 + 27]|z||1 we get the scheme:
2" = argmin G(z,z") = S, (" + ATb — AT Az"™)
x

This is known as the Iterative Soft Thresholding Algorithm (ISTA) but it is

slow. 0 2
P") — P(z) < Sz =2l
n
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Fast-ISTA (Nesterov; Beck and Teboulle)

yO _ SCO ’ tl -1 , $n+1 _ ST(yn _ AT(Ayn _ b))

1++/1F422
tpp1 = ——Y-T=m
2
n n tn_l n n—
yr ="+ (@" —a" )
tn+1

Much Faster Convergence

Coll2 — a3

F(z") - F(z) < (n+1)2

FISTA speedup trick above can be applied to different algorithms.

Other Approaches
o Coordinate Descent: Update one coordinate at a time.
o Dual Space: work with dual of ||z]1.

o Smooth Approximation: replace ||z||1 by something smooth.
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Dual Space

Definition
The dual of a norm || - || on RY is defined for any y € RY as,
_ (y, )
llyll- = max | Tl
Lemma
N
The dual of ||zllx =Y [wx| is |lylleo = maxi [|yl]
k=1

Dual space algorithm procedure:
(1) [min f(z) s.t. Az = b] — L(z,y) = f(z) +y" (b— Azx)
(2) gy = mzin L(z,y) —» § = arg mjxg(y)

(3) Z=argminL(z,7)
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min ||z||; s.t. Az = b (DALM [Yang, Zhang. 2011])

L(z,y) = ||zl +y" (b - Ax)

Dual problem:

max b’y s.t. [|[ATy||eo < 1] — [min by stz=ATy,||z]]e <1
Y y

Augmented Lagrangian:

min L,(y,z,z) = —b"y—z" (z— ATy) + gHz —ATyl3 st |z)le < 1.
z,y,2
We can differentiate L with respect to each variable:
VZLH("E’:%Z) = ATy_z
VyLu(z,y,2) = —b+ Az +pA(ATy - 2)
V.Lu(z,y,2) = —w+p(z—A"y).
We alternate with the different updates and increase p.
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Sparse Reconstruction

o Start with sparse x. Set y = Ax + v where A is a sample matrix, v is
noise.

o Solve 7 = arg min,, ||Ax — y||3 + ®(x) and compare Z to original =.

o Use continuation strategy for 7, starting close to ||A”y||e and decreasing
until [[AZ —y||2 = [[v]]2.

RESIDUALS VS TAU

svos weut

Image Reconstruction

o Start with vectorized image x.

o Obtain samples with sensing matrix A: y = Az + v where v is some
Gaussian noise.

o Recover z via & = argmin, ||Az — y||3 + ®(z).
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Wavelet Image Denoising

o Start with vectorized image x sparse under some transform W.
o Obtain y = x + v where v is some Gaussian noise.

o Denoise by solving @ = arg miny, ||W ™ w — y||3 + ®(w). Set 7 = W~ w.

e ~
vl l vi
aid N |

Image Deblurring

o Start with vectorized image x sparse under some transform W.

o Obtain y = AHx + v where A is a sample matrix, H is a blur matrix and
v is noise.

o Solve @ = argmin,, ||AHW ~'w — y||3 + ®(w) and compare T = W™ to
the original x.
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New work in iterative algorithm development

Variable Thresholding Function [with H. Woerdeman, 2012]

p

soft thresholding hard thresholding firm thresholding
a—2p—7), a>r;
2(a —p), p<a<T;
Vor(a)=1q 0, —p<a<p;
2(a+ p), —T<a<—p;

a+2p—71), a<-—-T1.

Notice that when p = 7 above, V. (a) = S;(a). Also, when p =

3, the large
entries are not penalized.
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We proceed from soft to firm thresholding (convex to non-convex
optimization):

soft thresholding = firm thresholding

Iterative Variable Thresholding Algorithm

"=V, (z"+ ATb— AT Az™)

T

WithpozTandpn—>5asn—>oo.

FIVTA
yO = 1170, xn = VP"yT(yn + AT(b - Ayn))v
tn, —1 _
yn+1:mn+ n xn_mn 1)
tn+1
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Numerical Advantages of IVTA/FIVTA schemes

Faster Convergence:

SVDS INPUT
100y

50,
00}
“ I I]l I h 0 N N S —
:
H : 100

S ] |

RESIDUALS VS TAU

2
2
|

11AX
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p-thresholding with R. Chartrand (2013)

(S-(x))r = sgn(xk)max(0, |xg| — 7)

(Rep(@)r = sgn(zr) max(0, |zx| — 7]z ")
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Convolution smoothing (with G. Ozkaya and D. Yoshida)

Approximate mollifier; smooth out absolute value [¢| with bump function:

1 —t? _
£0) = graze™ a0) =1 erta) = = [
U e = [ st - nas =tert (£ ) 4+ 2oes
~ * s)g S— S = ter oez202
g fd
1 4 1
0.8 3 0.8
0.6 0.6
2
0.4 0.4
0.2 ! j \ 02|
MY 0 0.5 05 0 05 s 0 05

Fi(z) [Az = b]l3 + 272[lx

Hi(z) = ||Ax—b||2+272(mkerf<fo_>+\/50@%2>

k=1

%
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V. [Hi(z)] = 24T (Az — b) + 27 {erf(

=1,...,

2 o gT 427 _ wi _ i _ s
Vi [Hi(z)|=24" A+ TDwg (exp ( 202 292 P | —5.5

Can generalize to non-convex min (p < 1).

1
n P
1Az — b]3 + 27 (Z mv’)

k=1

Hy(z) = || Az — b3 + 27 (Z ¢§(wk))

k=1

Fp(x)

3=

Q

Vinele) =202 (Z ‘b”(x’“)p) o {<f>ﬂ<zj>P*1 ext (%) };

k=1
and the Hessian is given by:
V2H,,(z) = 2ATA + 21 (U(I)v(z)T + Diag(w(m))) ,

where v(z) and w(z) depend on erf(z).
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Algorithm Nonlinear Conjugate Gradient Scheme

Input : An m x n matrix A, an initial guess n x 1 vector z°, a parameter 7 < ||ATb||o0,

a parameter p € (0,1], a parameter oy > 0, a parameter 0 < a < 1, the maximum
number of iterations M, and a routine to evaluate the gradient VH, ;(z) (and possibly
the Hessian V2H,, ,(z) depending on choice of line search method).

Output: A vector Z, close to either the global or local minimum of Fy,(z), depending on choice
of p.

0= —VH, (2% ;

for k=0,1,...,M do
use line search to find g > 0;
2"*1 = Threshold(z" + us™,7) ;

il _ Vi (@ )T (Vg (") =V Ty ) ()
7 = max e, G Hy o () 055

sn+1 — 7va,g"(z7L+1) + /3n+lsn ;
On+1 = Q0p

end

o — 1.

&= gt

RESIDUAL NORMS vs tau % ERRORS vs lau FVALS vs tau

—Tista
—c

log ||Ax - bi|
% error
log F(x)

-39 a6 26 33 33 39 46
logtau frac) logtau frac)

33
ogitau frac)
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Re-weighted least squares (with I. Daubechies, 2012, 2016)

N
Use a weighted two norm: ||z||2,. = Z wia;. Weight based on z™:
k=1

N N $2 N mg N
llalle =3 lael = 3 ot Y — e = ) wila}
k=1 = el V(@)% + (en)?

k=1

Tteratively Reweighted Least Squares MM Algorithm

8 n n al n
Ok <||A93—b||§—IIA(«'B—w NE + [l — 23 +27 ) w; r?) =0
=1

= —2(ATb)y, + 2(AT Az") g + 2ay, — 22} + Arwiay, = 0.

™ = (argmin Gz, 2", w", €n))k
1
n+1 n T T Ag™
BN S A —(A"A )
Tk 14 21w}y (xk +(A0)k = ")
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Generalization of the Objective Functional

Instead of ||Az — b||3 + 27]|z||1, we generalize to:

N
|Az = bl[5 + 2> Aelag|™ for 1< qp <2

-
&

min(|z|? + |y|q)% for g =2, =1, =0.5.

N N mz N $2
llalle =D lawl =Y e 0 — e
k=1 =1 | = V(@) (en)
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Simple derivation of IRLS scheme

Using the Majorization-Minimization setup:

CE’LH—I = (argmzinG(:L’,w",wn,en))k
1 n T T n
= (et (AT — (AT Az )
1+qkwg(k (ATb)x — ( I
n 1 . _ . n n—1 %
wp = o 3 oo =min (e, (" = 2" + )

(%) + (en)?) 2

for the generalized functional

N
argmzin{HA:c—bH%+22)\k|wk|qk} for 1<qr <2

k=1
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Feature extraction for Geophysical models

Expand model in a wavelet basis
Let w= Wz and = (m;) = W 'w. Then Az =b = AW 'w =b.
N N N
bi:Z 0\ My = ZK’J (ZW kw?) :ZZK"’jWJ’T’“le
j=1 J=1k=1

Hence, for the discretized minimization problem, we can solve:

N
7 :argmin{”AW_lw—b@+29(wk,>\k)} =W lw
k=1
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YAMPA Support Detection (with A. Lodhi and W. Bajwa,
2016)

CoSaMP type of method with matrix dependent threshold. Threshold

derived based on assuming high probability of correct support in first iteration.

Algorithm 1: Yet Another Matching Pursuit Algorithm (YAMPA)
Require: Measurements b and measurement matrix A.

Ensure: Initial estimate Xo < 0, initial global support Ty < (), and iteration number s « 0.
1: while stopping criteria is satisfied do
2 s s+l
3 Obtain s-th residual signal ry < b — Ali;_)
4: Form (absolute-valued) proxy vector q + |Afr|
5. Find local support set Ty ¢ {i] ¢; > As}
6: Merge supports: Ty <~ Ty UTs
7: Find new estimate ﬁSth — A’;‘ULb
8: end while
Output: Final estimate X;.

Worst-Case Coherence: p(A) = max. (ai,a;)|, and
4,5317]

)

1
Average Coherence: v(A) = ﬁmax‘ Z (a;,a;)

J:jF#i

Threshold: Ay = c1|ts||2 + covVE||rs 12,
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Reconstruction errors for 1000 x 1000 Gaussian random matrices with rapid
singular value decay and 0 and 300 approximately correlated columns.

ERRORS YAMPA SUPPORT SIZES

500

400

300

200

100

ERRORS YAMPA SUPPORT SIZES

500

400

300

200

100
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Thanks!

Regularization, wavelets, big matrices. Low rank matriz approrimations can be
computed efficiently using existing software and applied to various inverse
problems. Various open problems.

o S. Voronin and P.G. Martinsson. RSVDPACK: An implementation of
randomized algorithms for computing the singular value, interpolative,
and CUR decompositions of matrices on multicore and GPU
architectures, 2016.

o S. Voronin and P.G. Martinsson. Efficient algorithms for CUR and
Interpolative Matrix Decomposition, 2016.

o S. Voronin and I. Daubechies. An iteratively reweighted least squares
algorithm for regularization with sparsity constraints, 2016.

o P.G. Martinsson and S. Voronin. A randomized blocked algorithm for
efficiently computing rank-revealing factorizations of matrices, 2015.

o S. Voronin, D. Mikesell, and G. Nolet. Compression Approaches for the
Regularized Solutions of Linear System from Large-Scale Inverse
Problems, 2015.

o S. Voronin, D. Mikesell, I. Slezak, and G. Nolet. Solving large
tomographic linear systems: size reduction and error estimation, 2014.
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