
Topics in big matrices, regularization,
and inverse problems.

Sergey Voronin

sergey.voronin@outlook.com

2017

Sergey Voronin 1/85

Contents

(1) A few applications: geotomography, imaging and compression,
sparse signals, data fitting.

(2) Big matrices.

(3) Low rank decompositions and randomized algorithms.

(4) Some examples from applications and HPC software.

(5) More on regularization and non-smooth minimization.

Sergey Voronin Introduction 2/85

(1) Some applications of my work: geotomography, imaging and
compression, sparse signals, data fitting.

Sergey Voronin Introduction 3/85

Geotomography delay time inverse problem

Goal: to create a 3D map of the interior structure of the Earth using data
from earthquakes. Existing spherically symmetric model v0(r) and delay times
δTi used to construct corrections δv(r).

δTi = Ti − T 0
i =

∫
Ri

dr

v(r)
−
∫
R0
i

dr

v0(r)

By Fermat’s principle, travel time of ray is stationary with respect to small
changes in ray path, so we can use the reference path R0

i :

δTi =

∫
Ri

δv−1 (r(s)) ds ≈ −
∫
R0
i

δv(r)

v2
0(r)

ds =

∫ si(∆)

si(0)

−v−1
0 (r)

δv(r)

v0(r)
ds

We typically replace −v−1
0 (r) by a sensitivity kernel K(r).

Sergey Voronin Geotomography 4/85

Linearization to Ax = b̄ (with error) for m× n matrix A

(δT)i =

N∑
j=1

xj

∫
[K(r)]i,jdr =⇒ b̄i =

N∑
j=1

Ki,jmj =⇒ b̄ = Ax

=⇒ Ax = b̄ with Ai,j = Ki,j , xj =
δvj

(v0)j
and b̄i = [(δT)i].

Matrix rows correspond to source-receiver pair kernel

Min=−7.69e−05

Max=5.34e−05

−5e−05 −2.5e−05 0.0 2.5e−05 5e−05

Min=−0.00742

Max=0.00446

−0.0005 −0.00025 0.0 0.00025 0.0005

Matrix columns correspond to coordinate system grid

E.g. take set of radii (levels) and at each level project sphere onto cube.

Min=−3

Max=4.9154

−5 −2.5 0.0 2.5 5

Azimut: 90
o

n=(35
o
N,−120

o
E)

 ∆
x
=20km

 ∆
y
=20km

testslice

Min=0
Max=4.4088

−5 0 5

Min=−3

Max=4.9154

−5 −2.5 0.0 2.5 5

Sergey Voronin Geotomography 5/85

Solving Ax ≈ b to recover useful features.

◦ A has rapid decay of singular values, rhs noisy: need least squares +
regularizer.

◦ Possibility to include correction terms.

◦ Need to pick up multi-scale resolution components in x.

◦ Least Squares

x̄ = arg min
x

{
‖Ax− b‖22

}
=⇒ ATAx̄ = AT b

=⇒ x̄ = VDiag(
1

σi
)UT b

Very large norm for small σi.

◦ Tikhonov Regularization

x̄λ = arg min
x

{
‖Ax− b‖22 + λ‖x‖22

}
=⇒ (ATA+ λI)x̄λ = AT b

=⇒ x̄λ = VDiag(
σi

σ2
i + λ

)UT b

Tikhonov minimization filters the effects of singular vectors
corresponding to small singular values.

Sergey Voronin Geotomography 6/85

Variance of Solutions
We define:

Cov(x, y) = E[(x− E[x])(y − E[y])] ; var(x) = Cov(x, x) = E[(x− E[x])2]

Assume b = b̄+ e (the true data plus noise). Assume the two are uncorrelated
and that E[e] = 0.

var(e) = E[(e− E[e])(e− E[e])T] = E[eeT] = ν2I

var(b) = E[(b− E[b])(b− E[b])T] = E[eeT] = ν2I

For the least squares solution:

‖ var(x̄)‖22 =
ν2

σ2
r

For Tikhonov solution:

‖ var(x̄λ)‖22 ≤
ν2

4λ
Regularized solutions are not as sensitive to noise in b and to approximation
of A.

Sergey Voronin Geotomography 7/85

Tikhonov regularization with smoothing

x̄ = arg min
x

{
‖Ax− b‖22 + λ1‖x‖22 + λ2‖Lx‖22

}
arg min

x

∥∥∥∥∥∥
 A√

λ1I√
λ2L

x−
b0

0

∥∥∥∥∥∥
2

2

=⇒

 A√
λ1I√
λ2L

T  A√
λ1I√
λ2L

 x̄ =

 A√
λ1I√
λ2L

T b0
0


Smoothness controlled by Laplacian operator L

Min=−49.9635

Max=63.7511

−10 −5 0.0 5 10

Min=−8.5395

Max=5.5167

−5 −2.5 0.0 2.5 5

Including correction terms.

{x̄, v̄} = arg min
x,v

{∥∥∥∥[A C
0 D

] [
x
v

]
−
[
b
0

]∥∥∥∥2

2

+ λ1‖x‖22 + λ2‖Lx‖22

}
where C is a matrix of correction columns and D = εI is a matrix of damping
terms to control the size of the correction solution portion v.

Sergey Voronin Geotomography 8/85

Representation of model in wavelet basis (with F.J. Simons,
G. Nolet, et al., 2011, 2013)

Let w = Wx and x = W−1w. Then Ax = b =⇒ AW−1w = b.

bi =
N∑
j=1

Ki,jxj =

N∑
j=1

Ki,j

(
N∑
k=1

W−1
j,kwj

)
=

N∑
j=1

N∑
k=1

Ki,jW
−1
j,kwj

For orthogonal transform W one has ‖Wx‖22 = ‖x‖22 and hence minimizing
‖Ax− b‖22 + λ‖Wx‖22 is equivalent to minimizing ‖Ax− b‖22 + λ‖x‖22. For
sparse minimization, we use a sparse penalty in the wavelet domain, e.g.:

w̄ = arg min
w

{
‖AW−1w − b‖22 + 2τ‖w‖1

}
; x̄ = W−1w̄

Compactly supported wavelets

ψk,n(t) = a−k/2ψ(a−kt− nb)

x(t) =
∑
k∈Z

∑
n∈Z

〈x, ψk,n〉ψk,n(t)

Sergey Voronin Geotomography 9/85

Translations and Scalings of the Haar Wavelet

Different choices of wavelets

Sergey Voronin Geotomography 10/85

Sparse and wavelet based regularization

◦ Different constraints on the solution are possible. E.g. sparsity (few
nonzeros) with respect to a suitable basis.

x̄1 = arg min
x

{
‖Ax− b‖22 + τ‖x‖22 + λ‖Lx‖22

}
x̄2 = arg min

x

{
‖Ax− b‖22 + τ‖x‖1

}
w̄3 = arg min

w

{
‖AW−1w − b‖22 + τ‖w‖1

}
; x̄3 = W−1w3

◦ These opt problems can be solved via CG and iterative thresholding:

(A∗A+ τI + λL∗L) x̄1 = A∗b

w̄n+1 = S τ
2

(w̄n +A∗(b−Aw̄n))

◦ Need be able to apply methods with very large matrices (several TB).

Sergey Voronin Geotomography 11/85

Sample global and local reconstructions (68 KM, 135 KM)

0˚ 60˚ 120˚ 180˚ −120˚ −60˚

−60˚

−30˚

0˚

30˚

60˚

0˚ 60˚ 120˚ 180˚ −120˚ −60˚

−60˚

−30˚

0˚

30˚

60˚

110˚ 120˚ 130˚ 140˚ 150˚ 160˚

−40˚

−30˚

−20˚

−10˚

0˚

run7_local0068

110˚ 120˚ 130˚ 140˚ 150˚ 160˚

−40˚

−30˚

−20˚

−10˚

0˚

run7_local0135

These models consist of 3 million variables; required significant amounts of
large cluster computer use.

Sergey Voronin Geotomography 12/85

Regularization parameter estimation

Need to find optimal regularization parameter τ to use.

ε̄ = log ‖xτ‖ and ρ̄ = log ‖Axτ − b‖.

c̄τ = 2
ρ̄′ε̄′′ − ρ̄′′ε̄′

((ρ̄′)2 + (ε̄′)2)
3
2

,

⇒ Requires several runs with possibly very large matrix A.

Sergey Voronin Regularization 13/85

Sparse signals

◦ Can one identify the support of a sparse signal from a limited number of
measurements?

E.g. intermittent bird singing in the forest, sound blurred by strong wind.
(One wants to find the times when a particular noise is made) ⇒ Ax = b.

◦ Can do frequency filtering with FFT but this will not tell you where in
time a particular frequency occured.

◦ Typically, can phrase this as a linear problem Ax = b s.t x is sparse and
would like to identify the support of x.

Sergey Voronin Sparse signal recovery 14/85

Denoising and deblurring of images

Denoising with Wavelet thresholding:

w̃ = T[Wx]⇒ x̃ = W−1w̃

Deblurring with FFT and filter:

g(x, y) = f(x, y) ? h(x, y) + n(x, y)

G(kx, ky) = F (kx, ky)H(kx, ky) +N(kx, ky)

F̃ (kx, ky) = Y (kx, ky)G(kx, ky)

For noisy and blurred images, iterative de-convolution can be used.

Sergey Voronin Image enhancement and compression 15/85

Known blurring source

When the blurring source is known (or can be estimated) a linear optimization
problem can be setup. Images can be blurred via convolution:

(?) + (noise) =

Blurring can be represented in terms of a linear operator:

Deblurring done in terms of a least squares problem:

Bx = y + n→ x̄ = arg min
x

{
‖Bx− y‖2 + Φ(x)

}
◦ What to pick for Φ(x)? How to estimate B when the blur source is

unknown?

Sergey Voronin Image enhancement and compression 16/85

High ratio image and video compression

◦ Take image matrix X (or well compressible portion).

◦ Apply 2D wavelet transform (CDF 97) to get w = WX.

◦ Apply thresholding to get w̃ = T(w).

◦ Further compress w̃. Use W−1(·) to reconstruct.

How to compress w̃ further?

Original and compression ratios 2, 4, 8 after pure wavelet compression.

Sergey Voronin Image enhancement and compression 17/85

Nonlinear model fitting

Fitting set of points (t1, y1), . . . , (tm, ym) with a nonlinear model. E.g.

F (x, t) = x1 exp
(
− (t−x2)2

2x23

)
+ x4. Penalty: g(x) = 1

2
‖r(x)‖2.

Sergey Voronin Model fitting 18/85

Newton and Gauss Newton
Fitting set of points (t1, y1), . . . , (tm, ym) to a nonlinear model. Let
g(x) = 1

2
‖r(x)‖2 with ri(x) = yi − F (x, ti).

Model fitting min problem: x̄ = arg minx g(x).
Setting ∇g(x) = 0, yields with Newton’s method:

x̄n+1 = x̄n −
[
∇2g(x̄n)

]−1∇g(x̄n)

Expanding the gradient and Hessian of g yields:

∇g(x) =

m∑
i=1

ri(x)∇ri(x) = JT r(x) where J = J [r(x)]

∇2g(x) =

m∑
i=1

∇ri(x)∇ri(x)T +

m∑
i

ri(x)∇2ri(x) = JTJ + T (x) ≈ JTJ.

T (x) =
∑m
i=1 ri(x)∇2ri(x) and J [r(x)](i,:) = ∇ri(x)T = −∇F (x, ti)

T .

Gauss-Newton Method: x̄n+1 = x̄n −
[
JTn Jn

]−1
JTn rn is easy but not stable!

Sergey Voronin Model fitting 19/85

Improvements of Gauss-Newton method

◦ Introduction of step size (“αn”)

x̄n+1 = x̄n − αn
[
JTn Jn

]−1

JTn rn

αn = arg min
α
g(x̄n − αsn) with JTn Jns

n = JTn rn.

◦ Regularization (Levenberg-Marquard method): JTn Jny = JTn rn replaced
by `2 norm penalty: (JTn Jn + λI)ỹ = JTn rn. (Prof. Mikesell’s group
looking into this).

◦ Other types of regularization here? Methods for parameter estimation of
λ? Previous tools apply to this non-linear problem.

Sergey Voronin Model fitting 20/85

(2) Matrix compression. The matrices in applications can be very
big!

Sergey Voronin Matrix compression 21/85

The big matrix A

In Geotomography application, A is of size 2968933× 3637248 (≈ 2− 3 TB in
sparse format). It’s too big. We divide into 20 blocks:

A =


A1

A2

...
A20


Each block is between 50, 000 and 500, 000 rows. Can do block matrix
operations:

A =


A1

A2

...
Ap

 =⇒ Ax =


A1x
A2x

...
Apx

 ; AT y =


A1

A2

...
Ap


T 

y1

y2

...
yp

 =

p∑
j=1

ATj yj

Sergey Voronin Matrix compression 22/85

Idea for compressing blocks of A

The blocks of A in original form are too big. Want to compress them in a
simple way. We appeal to Wavelet image compression:

x ≈W−1 (Thr(Wx))
The original image is approximately equal to the inverse transform of the

thresholded forward transform of the image.

Original; retain 15% of largest (by absolute value) wavelet coefficients; retain
3%. By thresholding, we mean the hard thresholding function:

Hα(x) = {x if |x| > α and 0 if |x| ≤ α}

To see if this works for the matrix, we apply it to some rows of A.

Sergey Voronin Matrix compression 23/85

Wavelet compression for kernels

Left: x ; Right: W−1 (Thr(Wx)) retain 5% largest coefficients

Min=−0.00742

Max=0.00446

−0.0005 −0.00025 0.0 0.00025 0.0005

Min=−0.0078295

Max=0.0042278

−0.0005 −0.00025 0.0 0.00025 0.0005

Another kernel, from 25% and 5% retained.

We have to retain about 25%.

Sergey Voronin Matrix compression 24/85

Applying wavelet compression to matrix vector ops [with D.
Mikesell, G. Nolet, 2015]

A =


r1

r2

...
rm

→M =


Thr(WrT1)T

Thr(WrT2)T

...
Thr(WrTm)T

 = Thr(AWT) ≈ AWT

We can then approximate the operations Ax and AT y with the matrix M .

Mx ≈ AWTx and MT y ≈ (AWT)T y = WAT y

we obtain the approximation formulas:

Ax ≈MW−Tx and AT y ≈W−1MT y

To test how well this works, we need to write code to form A, then form M
and to be able to apply the wavelet transforms.

Sergey Voronin Matrix compression 25/85

Result for one-matrix case
Sizes: A1 (438674× 3637248) is 115 GB; M1 (438674× 3637248) is 35 GB
A1x versus M1W

−Tx; AT1 y versus W−1MT
1 y; and AT1 A1x versus

W−1MT
1 M1W

−Tx for 50 random vectors x and y.

Errors in A1x and AT1 y about 8%. Errors in AT1 A1x about 15%. Now we
compare the solutions to:

(AT1 A1 + λI)x1 = AT1 b and (W−1MT
1 M1W

−T + λI)x2 = W−1MT
1 b

What really matters is the error in the operation AT1 A1x.

Sergey Voronin Matrix compression 26/85

Min=−13.4341

Max=10.9303

−3 −1.5 0.0 1.5 3

Min=−13.5311

Max=11.0029

−3 −1.5 0.0 1.5 3

Azimut: 90
o

n=(42
o
N,−120

o
E)

 ∆
x
=20km

 ∆
y
=20km

depth profile

Min=−8.8743
Max=5.7581

−1 0 1

Azimut: 90
o

n=(42
o
N,−120

o
E)

 ∆
x
=20km

 ∆
y
=20km

depth profile

Min=−8.8244
Max=5.8061

−1 0 1

Sergey Voronin Matrix compression 27/85

Compression works well but only for individual blocks

Error at one depth about 5%; error at all depths about 12% (similar to AT1 A1x
error) ; consequence of Tikhonov regularization

Min=−13.4341

Max=10.9303

−3 −1.5 0.0 1.5 3

Min=−13.5311

Max=11.0029

−3 −1.5 0.0 1.5 3

Sergey Voronin Matrix compression 28/85

Using the whole system of 3 million rows

A =


A1

A2

...
A20

 =⇒ Ax =


A1x
A2x

...
A20x

 ; AT y =


A1

A2

...
A20


T 

y1

y2

...
y20

 =

20∑
j=1

ATj yj

approximated via:

M =


Thr(A1W

T)
Thr(A2W

T)
...

Thr(A20W
T)

 =⇒ Ax ≈


M1W

−Tx
M2W

−Tx
...

M20W
−Tx

 ; AT y ≈
20∑
j=1

W−1
j MT

j yj

For this, we first form the 20 submatrices M1, . . .M20 by transforming and
thresholding the rows of A1, . . . , A20 (a lot of i/o).

Not enough compression for a ≈ 2 TB matrix

Want to take advantage of rapid singular value decay of A.

Sergey Voronin Matrix compression 29/85

(3) Low rank decompositions and randomized algorithms for
efficiently computing them.

Sergey Voronin Matrix compression 30/85

Low Rank SVD

A =
[
u1 . . . ur

]

σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σr


 v
∗
1

...
vr
∗

 = UΣV ∗

≈ UkΣkV
∗
k =

[
u1 . . . uk

]

σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σk


 v
∗
1

...
vk
∗


with k << r ≤ min(m,n).

◦ A is sparse m× n
◦ Uk is dense m× k
◦ Σk is diagonal k × k
◦ Vk is dense n× k
◦ =⇒ if k is much smaller than min(m,n) one gets very substantial

savings.

Sergey Voronin Low rank decompositions 31/85

Randomized algorithm O(mnk), [Halko, Martinsson, Tropp]

◦ A is m× n
◦ Uk is m× k, U∗kUk = I ; Vk is n× k, V ∗k Vk = I; Σk is k × k.

Sample range of A with k + p lin. indep. vectors, so that QQ∗A ≈ A.

◦ Draw an n× (k + p) Gaussian random matrix Ω.
Omega = randn(n,k+p)

◦ Form the m× (k + p) sample matrix Y = AΩ.
Y = A * Omega ; ranY ≈ ranA

◦ Form an m× (k + p) orthonormal matrix Q such that Y = QR.
[Q, R] = qr(Y) ; ranQ ≈ ranA

◦ Form the (k + p)× n matrix Q∗A.
B = Q’ * A

◦ Compute the SVD of the smaller (k + p)× n matrix B: B = ÛΣV ∗.
[Uhat, Sigma, V] = svd(B)

◦ Form the matrix U = QÛ .
U = Q * Uhat ; QQ∗A ≈ A

◦ Uk = U(:, 1 : k),Σk = Σ(1 : k, 1 : k), Vk = V (:, 1 : k).

Sergey Voronin Randomized algorithms for low rank matrix factorizations 32/85

Low rank SVD via SVD of (k + p)× (k + p) matrix

SVD of B = Q∗A which is (k + p)× n is expensive, but we can work with
BB∗ = Q∗AA∗Q which is (k + p)× (k + p).

B = UΣV ∗ =

k∑
i=1

σiuiv
∗
i and Bvi = σiui

From which it follows that we can extract the eigenvectors ui from BB∗:

BB∗ =

(
k∑
i=1

σiuiv
∗
i

)(
k∑
j=1

σjujv
∗
j

)∗
=

k∑
i,j=1

σiσjuiv
∗
i vju

∗
j =

k∑
i=1

σ2
i uiu

∗
i

For the right eigenvectors vi we can use:

B∗U = V ΣU∗U = V Σ =⇒ B∗UΣ−1 = V

=⇒ vi = V ei = (B∗UΣ−1)ei =
1

σi
B∗ui

Power sampling scheme

(AA∗)qA = UΣ(2q+1)V ∗

Sergey Voronin Randomized algorithms for low rank matrix factorizations 33/85

Eckart-Young Thm ; Power Sampling (AA∗)qAΩ, q ≥ 1.

A an m× n matrix. For 1 ≤ k ≤ min(m,n), the truncated SVD Ak gives:

‖A−Ak‖2 = σk+1 ; ‖A−Ak‖F =

min(m,n)∑
j=k+1

σ2
j

1/2

(1)

E‖A− UkΣkV
∗
k ‖F =

(
1 +

k

p− 1

) 1
2

min(m,n)∑
j=k+1

σ2
j


E‖A− UkΣkV

∗
k ‖2 =

(
1 +

√
k

p− 1

)
σk+1 +

(
e
√
k + p

p

)min(m,n)∑
j=k+1

σ2
j



20 40 60 80 100 120 140 160 180

rank k

0

0.2

0.4

0.6

0.8

1

||
A

 -
 A

k
||
/|
|A

||

Approximation Errors vs rank k

SVD

rSVD q=0

rSVD q=1

rSVD q=2

20 40 60 80 100 120 140 160 180

rank k

0

0.2

0.4

0.6

0.8

1

||
A

 -
 A

k
||
/|
|A

||

Approximation Errors vs rank k

SVD

rSVD q=0

rSVD q=1

rSVD q=2

20 40 60 80 100 120 140 160 180

rank k

0

0.2

0.4

0.6

0.8

1

||
A

 -
 A

k
||
/|
|A

||

Approximation Errors vs rank k

SVD

rSVD q=0

rSVD q=1

rSVD q=2

Sergey Voronin Randomized algorithms for low rank matrix factorizations 34/85

When Y = AΩ captures the range of A, then QQ∗A = A.

(1) R(A) ⊆ R(Q) (the range of A is a subset of the range of Q)

(2) A = QQ∗A

As k approaches the rank of A, the approximation QQ∗A approaches A.

A = U

[k n−k

Σ1 0
0 Σ2

] [n

k V ∗1
n−k V ∗2

]
.

Let Ω1 = V ∗1 Ω and Ω2 = V ∗2 Ω; set Y = AΩ and Q = orth(Y). Then [HMT]:

‖(I −QQ∗)A‖ ≤ ‖Σ2‖2 + ‖Σ2Ω2Ω†1‖
2. (2)

Everything works if we can construct Q s.t. ‖QQ∗A−A‖ < ε:

B = Q∗A, ‖A−QB‖ < ε, (3)

We can form different approximate low rank factorizations from B:

B = ŨDV ∗ =⇒ A ≈ (QŨ)DV ∗

BP = Q̃R =⇒ AP ≈ (QQ̃)R

Sergey Voronin Randomized algorithms for low rank matrix factorizations 35/85

Constructing Q given ε > 0 [Martinsson, V., 2015]

After first iteration, A(1) = A(0) − q1b1 = A− q1q∗1A = (I −Q1Q
∗
1)A. Next,

q2 ∈ ran(A(1)) = ran((I − q1q∗1)A) ∈ ran(I − q1q∗1) so q∗2q1 = 0 and
A(2) = A(1) − q2b2 = A− q1q∗1A− q2q∗2A = (I −Q2Q

∗
2)A. At the end of

iteration j, we have:

A(j) = (I −QjQ∗j)A and Bj = Q∗jA (4)

When ‖A(j)‖ < ε, we have Qj s.t. ‖QjQ∗jA−A‖ < ε.

Sergey Voronin Randomized algorithms for low rank matrix factorizations 36/85

A block algorithm (add many vectors at a time)

At the end of iteration j, we have as before:

A(j) = (I −QjQ∗j)A and Bj = Q∗jA (5)

When ‖A(j)‖ < ε, we have Q s.t. ‖QQ∗A−A‖ < ε. Algorithm increases
matrix multi cost but decreases QR factorization cost.

Sergey Voronin Randomized algorithms for low rank matrix factorizations 37/85

Ideas for very large matrices

Sergey Voronin Randomized algorithms for low rank matrix factorizations 38/85

Rank k pivoted QR factorization.

A P = Q S,
m× n n× n m× r r × n (6)

where P is a permutation matrix, Q has orthonormal columns, and S is upper
triangular and AP = A(:, Jc). We can stop after the first k iterations of the
algorithm, obtaining:

A(:, Jc) =
[k r−k

m Q1 Q2

]
×

[n

k S1

r−k S2

]
= Q1S1 +Q2S2. (7)

S1 =
[k n−k

k S11 S12

]
and S2 =

[k n−k

k 0 S22

]
, (8)

(i.e., S =

[k n−k

k S11 S12

r−k 0 S22

]
,) (9)

A(:, Jc) = Q1

[
S11 S12

]
+Q2

[
0 S22

]
=

[k n−k

m Q1S11 Q1S12 +Q2S22

]
.

Sergey Voronin Randomized algorithms for low rank matrix factorizations 39/85

Rank k ID and tsID factorizations.

C := A(:, Jc(1 : k)) = Q1S11.

Q1S1 =
[
Q1S11 Q1S12

]
= Q1S11[Ik S−1

11 S12] = C [Ik Tl],

where Tl is the solution to the matrix equation S11Tl = S12 which can be
solved for Tl a column at a time.

A ≈ CV ∗, where V ∗ =
[
Ik Tl

]
P ∗. (10)

The one sided ID of (rank k) is the approximate factorization:

A ≈ A(:, Jc(1 : k)) V ∗,
m× n m× k k × n (11)

where we use a partial column skeleton C = A(:, Jc(1 : k)) of a subset of the
columns of A and V is a well-conditioned matrix.

The two sided ID of (rank k)

A ≈ W A(Jr(1 : k), Jc(1 : k)) V ∗,
m× n m× k k × k k × n (12)

is obtained via two successive one sided rank k ID computations.

Sergey Voronin Randomized algorithms for low rank matrix factorizations 40/85

Column norm preservation

Lemma

Let Ω̃ ∈ Rl×m be a matrix with GIID entries. Then for any a ∈ Rm we have

that E
[
‖Ω̃a‖2
‖a‖2

]
= l and V ar

[
‖Ω̃a‖2
‖a‖2

]
= 2l.

⇒ Suppose A is m× n and we draw an l ×m GIID matrix Ω̃. Suppose we

then form the l × n matrix Z = Ω̃A. Then, E
[
‖Z(:,j)‖2
‖A(:,j)‖2

]
= l.

Randomized algorithm O(mnk), [Voronin, Martinsson, 2015]

Sergey Voronin Randomized algorithms for low rank matrix factorizations 41/85

Rank k CUR factorization.
The two sided ID allows us to construct the popular Column/Row skeleton
CUR (rank k) decomposition:

A ≈ C U R,
m× n m× k k × k k × n (13)

Suppose we compute a two sided rank k ID factorization forming the k × k
column/row skeleton A(Jr(1 : k), Jc(1 : k)). Set:

C = A(:, Jc(1 : k)) and R = A(Jr(1 : k), :)

We then set this to equal the factors C and R in CUR:

CUR = A(:, Jc(1 : k))UA(Jr(1 : k), :) ≈ A(:, Jc(1 : k))V ∗ (14)

where we take U to satisfy the system:

UR = V ∗, (15)

Interestingly, this scheme (non-randomized) often has better error than the
partial QR.

Sergey Voronin Randomized algorithms for low rank matrix factorizations 42/85

Compare rank k SVD, QR, rand CUR errors
300× 300 matrix, p = 10, q = 2.

0 50 100 150 200 250

K

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
ERRORS vs k

SVD

RSVD

QR

RID

RCUR

20 40 60 80 100 120 140 160 180 200

K

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ERRORS vs k

SVD

RSVD

QR

RID

RCUR

◦ Errors can be far from optimal.

◦ For sparse A, ID and CUR require less storage than SVD.

Sergey Voronin Randomized algorithms for low rank matrix factorizations 43/85

Storage sizes for full and sparse matrices

50 100 150 200

K

0

0.5

1

1.5

2

2.5

#
 o

f
e
le

m
e
n
ts

×10
5 TOTAL NONZEROS (300 x 300, FULL MATRIX)

SVD, CUR

ID

50 100 150 200

K

0

5

10

15

#
 o

f
e
le

m
e
n
ts

×10
4 TOTAL NONZEROS (300 x 300, 0.5% SPARSE MATRIX)

SVD

ID

CUR

Sergey Voronin Randomized algorithms for low rank matrix factorizations 44/85

(4) Application to inverse problems (model order reduction).

Sergey Voronin Application to model order reduction 45/85

Low rank SVD UkSkV
∗
k ≈ A for model reduction

Classic Tikhonov problem: x̃ = arg minx
{
‖Ax− b‖22 + τ‖x‖22 + λ‖Lx‖22

}
.

⇒ (A∗A+ τI + λL∗L) x̃ = A∗b

Multiply on the left by V ∗k and choose solution of the form x̃ = Vkỹ:

V ∗k (A∗A+ τI + λL∗L)Vkỹ = V ∗k A
∗b

⇐⇒
(
Σ2
k + τI + λV ∗k L

∗LVk
)
ỹ = ΣkU

∗
k b

(∵ V ∗
k A

∗
AVk = V

∗
k A

∗
kAkVk = Σ

2
k).

◦ Notice that x̃ has n variables and ỹ has k variables, with k � n.

◦ When λ = 0, equivalent to replacing A by UkΣkV
∗
k above:(

VkΣ2
kV
∗
k + τI

)
x̃ = VkΣkU

∗
k b

◦ Why set x̃ = Vkỹ? Since we want Ax̃ ≈ UkSkV ∗k x̃ ≈ b:

⇒ UkΣkV
∗
k x̃ ≈ b⇒ UkΣkv ≈ b⇒ set x = Vkv ⇒ UkΣk(V ∗k Vk)v ≈ b

Sergey Voronin Application to model order reduction 46/85

Low rank QB decomposition QkBk ≈ A for model reduction

Classic `1-min problem: x̄ = arg minx
{
‖Ax− b‖22 + τ‖x‖1

}
.

xn+1 = S τ
2

(xn −A∗(Axn − b))

A ≈ Qk Bk,
m× n m× k k × n ⇒ QkBkx ≈ b⇒ Qky ≈ b

◦ Set y = Q∗kb (x has n variables, y has k variables).

◦ Solve y = Bkx via `1 minimization (cheaper since Bk is k × n).

xn+1 = S τ
2

(xn −B∗k(Bkx
n − y))

◦ Improve solution using a few iterations with A and b in place of Bk and y.

Sergey Voronin Application to model order reduction 47/85

Construction of approximate L curves (1000× 1500, k = 300)

10
-2

10
-1

10
0

10
1

tau

0

20

40

60

80

100

120

||
A

x
 -

 b
||

RESIDUALS vs tau

true x

full ell2

full ell1

lrsvd

lrid

0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

TIMES for ell2 min curve

full ell2

rsvd ell2

0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

7
TIMES for ell1 min curve

full ell1

qb ell1

Sergey Voronin Application to model order reduction 48/85

Application to large scale problems [Voronin et al., 2015]

Break A into blocks, compress each block, get low rank SVD of each block,
then get overall low rank SVD of compressed version:

A =


A1

A2

...
AN

→M =


M1

M2

...
MN

 =


T(A1W

T
1)

T(A2W
T
2)

...
T(ANW

T
N)

⇒ A ≈


Uk1Σk1V

T
k1

Uk2Σk2V
T
k2

...
UkNΣkNV

T
kN

 ≈ UkΣkV
T
k

◦ Form Qr, Br of each block using matrix-vector operations with Mr.

◦ Form (k + p)× (k + p) matrix BrB
T
r column by column

(BrB
T
r = QTr ArA

T
r Qr)

BrB
T
r ej = QTr ArA

T
r Qrej ≈ QTrMrW

−T
r W−1

r MT
r Qej

◦ Compute eigendecomposition of BrB
T
r to get Ũ and D.

◦ Compute Σi,i =
√
Di,i

◦ Compute U = QŨ (since QQTA = QB ≈ A)

◦ Compute vj = 1
σj
ATUej ≈ 1

σj
W−1MTUej as columns of V .

Sergey Voronin Application to model order reduction 49/85

Sizes with k = 2000 for small and large matrix

◦ A1, dimensions (438674× 3637248), size is 115 GB

◦ M1, dimensions (438674× 3637248), size is 35 GB

◦ U1k , Σ1k , V1k , dimensions
(438674× 2000), (2000× 2000), (3637248× 2000), sizes are 7 GB, 30 MB,
55 GB (≈ 62 GB total)

◦ A, dimensions (2968933× 3637248), size is 3.2 TB (approximate, never
computed)

◦ M , dimensions (2968933× 3637248), size is 1 TB

◦ Uk, Σk, Vk, dimensions (2968933× 2000), (2000× 2000), (3637248× 2000),
sizes are 45 GB, 30 MB, 55 GB (≈ 100 GB total)

For small matrix (115 GB), SVD offers no compression (wavelet compression
better).
For large matrix (3.5 TB), SVD offers 30x compression.
Results in double precision; factor of 2 savings possible.

Sergey Voronin Application to model order reduction 50/85

Approximate Matrix-Vector Operations (smaller matrix)

A1x ≈ Uk1Σk1V
T
k1
x, AT1 y ≈ Vk1Σk1U

T
k1

, AT1 A1 ≈ Vk1Σ2
k1
V Tk1 .

Smaller matrix not so badly conditioned. Errors in A1x and AT1 y
approximations are very high. Errors in AT1 A1x approximation are acceptable.

Sergey Voronin Application to model order reduction 51/85

Approximate Matrix-Vector Operations (big matrix)

Ax ≈ UkΣkV
T
k x, AT y ≈ VkΣkU

T
k , ATA ≈ VkΣ2

kV
T
k .

Larger matrix is worser conditioned. Errors in Ax and AT y approximations
are high. Errors in ATAx approximation are very small.

Sergey Voronin Application to model order reduction 52/85

Observations

◦ ATA is well approximated via low rank SVD.

◦ A is not well approximated unless a high enough rank k is used.

Approximate Regularization Schemes [Voronin 2015]

(ATA+ λ1I + λ2L
TL)x̄ = AT b

Get the schemes:

(VkΣ2
kV

T
k + λ1I + λ2L

TL)x̃1 = VkΣkU
T
k b

(VkΣ2
kV

T
k + λ1I + λ2L

TL)x̂1 = AT b

Can get explicit error bounds when λ1 = λ and λ2 = 0:

‖x̄− x̃1‖2 ≤
σk+1

λ+ σ2
k+1

‖b‖2

‖x̄− x̂1‖2 ≤
σ3
k+1

λ
(
λ+ σ2

k+1

)‖b‖2

Sergey Voronin Application to model order reduction 53/85

Low rank SVD solutions for A

Min=−26.6109

Max=21.152

−5 −2.5 0.0 2.5 5

Min=−11.046

Max=9.1325

−5 −2.5 0.0 2.5 5

Min=−14.379

Max=11.6269

−5 −2.5 0.0 2.5 5

Sergey Voronin Application to model order reduction 54/85

Low rank SVD solutions for A

Azimut: 90
o

n=(42
o
N,−120

o
E)

 ∆
x
=20km

 ∆
y
=20km

depth profile

Min=−10.4643
Max=8.4507

−5 0 5

Azimut: 90
o

n=(42
o
N,−120

o
E)

 ∆
x
=20km

 ∆
y
=20km

depth profile

Min=−6.1975
Max=6.7442

−5 0 5

Azimut: 90
o

n=(42
o
N,−120

o
E)

 ∆
x
=20km

 ∆
y
=20km

depth profile

Min=−11.9873
Max=9.0723

−5 0 5

Sergey Voronin Application to model order reduction 55/85

Low rank SVD solutions for A

Sergey Voronin Application to model order reduction 56/85

Low rank SVD solutions for A with Laplacian

Min=−7.9406

Max=8.5831

−5 −2.5 0.0 2.5 5

Min=−7.5823

Max=6.5072

−5 −2.5 0.0 2.5 5

Min=−11.5696

Max=9.6394

−5 −2.5 0.0 2.5 5

Sergey Voronin Application to model order reduction 57/85

Solution with more Laplacian smoothing and correction terms

Azimut: 90
o

n=(42
o
N,−120

o
E)

 ∆
x
=20km

 ∆
y
=20km

depth profile

Min=−5.8396
Max=3.517

−3 0 3

0

100

200

300

400

500

600

700

800

50 100 150 200 250

n
o
r
m

v
a
l

iteration

SOLUTION NORM

0

5

10

15

20

25

30

50 100 150 200 250

c
h
i
2

iteration

SOLUTION CHI2

Min=−4.8722

Max=3.7114

−3 −1.5 0.0 1.5 3

Sergey Voronin Application to model order reduction 58/85

Comparison with (Schaeffer and Lebedev, 2013) at 50, 100 km
depth

−45˚

−45˚

0˚

0˚

45˚

45˚

90˚

90˚

135˚

135˚

180˚

180˚

−135˚

−135˚

−90˚

−90˚

−45˚

−45˚

−90˚ −90˚

−45˚ −45˚

0˚ 0˚

45˚ 45˚

90˚ 90˚

−3.0 −1.5 0.0 1.5 3.0

dVs/Vs (%)

FFT−Tomo 0050km

−45˚

−45˚

0˚

0˚

45˚

45˚

90˚

90˚

135˚

135˚

180˚

180˚

−135˚

−135˚

−90˚

−90˚

−45˚

−45˚

−90˚

−45˚

0˚

45˚

90˚

−3.0 −1.5 0.0 1.5 3.0

dVs/Vs (%)

SL2013sv 0050km

−45˚

−45˚

0˚

0˚

45˚

45˚

90˚

90˚

135˚

135˚

180˚

180˚

−135˚

−135˚

−90˚

−90˚

−45˚

−45˚

−90˚ −90˚

−45˚ −45˚

0˚ 0˚

45˚ 45˚

90˚ 90˚

−3.0 −1.5 0.0 1.5 3.0

dVs/Vs (%)

FFT−Tomo 0100km

−45˚

−45˚

0˚

0˚

45˚

45˚

90˚

90˚

135˚

135˚

180˚

180˚

−135˚

−135˚

−90˚

−90˚

−45˚

−45˚

−90˚

−45˚

0˚

45˚

90˚

−3.0 −1.5 0.0 1.5 3.0

dVs/Vs (%)

SL2013sv 0100km

We recover similar features close to surface. Data sets for matrices are different
so direct comparison is not possible.

Sergey Voronin Application to model order reduction 59/85

Even more compression [with G. Nolet and D. Mikesell, 2014]

Use compressed system with automatic clustering:
UTk1A1

UTk2A2

...
UTkNAN

x =


UTk1b1
UTk2b2

...
UTkpbN

 or


Σk1V

T
k1

Σk2V
T
k2

...
ΣkNV

T
kN

x =


UTk1b1
UTk2b2

...
UTkN bN



By clustering matrix rows into blocks with overlapping nonzero patterns, very
high compression ratios are possible. For 3 million rows, we used about 20, 000
blocks. Need to calculate SVD components of individual blocks only, which
does not present computational challenge.

Sergey Voronin Application to model order reduction 60/85

Applications to image deblurring and denoising

Apply Wiener filter, then apply low rank inverse Toeplitz matrices:

Sergey Voronin Application to model order reduction 61/85

Using sparsity preserving CUR for image compression

◦ Take image matrix X (or well compressible portion).

◦ Apply 2D wavelet transform (CDF 97) to get w = WX.

◦ Apply thresholding to get w̃ = T(w).

◦ Apply low rank CUR to compress w̃: w̃ ≈ CUR.

◦ To reconstruct: X̃ = W−1(CUR).

Original and compression ratios 2, 4, 8 after pure wavelet compression.

Sergey Voronin Application to model order reduction 62/85

RSVDPACK

◦ Open source routines, for multi-core and GPU architectures, available at
https://github.com/sergeyvoronin.

◦ Can efficiently construct low rank QB, SVD, ID (A ≈ A(:, Jc(1 : k))V ∗),
and CUR (A ≈ CUR) factorizations in O(mnk) time.

0 500 1000 1500 2000 2500 3000

rank k

0

20

40

60

80

100
ti
m

e
 (

s
)

RUNTIMES for 6kx12k matrix on CPU

svd

qr

pqr

rsvd cpu

brsvd cpu

rid cpu

brid cpu

0 500 1000 1500 2000 2500 3000

rank k

0

20

40

60

80

100

ti
m

e
 (

s
)

RUNTIMES for 6kx12k matrix on GPU

svd

qr

pqr

rsvd gpu

brsvd gpu

rid gpu

brid gpu

0.5 1 1.5 2

dimension n ×10
4

10
-2

10
-1

10
0

10
1

10
2

10
3

ti
m

e
 (

s
)

RUNTIMES of MAT MULT for n x n matrices

cpu

gpu

gpu + transfer

0.5 1 1.5 2 2.5

dimension n ×10
4

10
-1

10
0

10
1

10
2

ti
m

e
 (

s
)

RUNTIMES of QB schemes for k=800, nxn matrices

pqr

qb cpu q=0

qb cpu q=2

qb cpu q=4

qb gpu q=0

qb gpu q=2

qb gpu q=4

Sergey Voronin Application to model order reduction 63/85

https://github.com/sergeyvoronin

(5) Iterative regularization techniques: new algorithms useful for
recovering sparse and multi-scale solutions.

Sergey Voronin Regularization techniques 64/85

Regularization with sparse penalties

◦ f(x, p) = |x|p for p < 1 is not convex.

◦ f(x, 1) = |x| is convex.

◦ Interesting to consider ||x||1 =
N∑
k=1

|xk|

min{|x|+ |y| : a1x+ b1y = c1} ; min{x2 + y2 : a2x+ b2y = c2}

Want to minimize: ||Ax− b||22 + 2τ ||x||1 but ||x||1 is not smooth.

Soft thresholding

(Sτ (x))k = sgn(xk) max(0, |xk| − τ)

Sτ (b) = arg min
x

{
||x− b||22 + 2τ ||x||1

}
Sergey Voronin Regularization techniques 65/85

Majorization-Minimization Approach for ISTA

Introduce two parameter G such that:

G(x, y) ≥ F (x) ∀x, y and G(x, x) = F (x)

Then set xn+1 = arg minxG(x, xn).

G(xn+1, xn+1) = F (xn+1) ≤ G(xn+1, xn) ≤ G(xn, xn) = F (xn)

Scale A (and b) so that ‖A‖2 < 1 and set:

G(x, xn) = ‖Ax− b‖22 + ‖x− xn‖22 − ‖A(x− xn)‖22 + 2τ‖x‖1
= ‖x− (xn +AT b−ATAxn)‖22 + 2τ‖x‖1 +K

Since Sτ (c) = arg minx ‖x− c‖22 + 2τ‖x‖1 we get the scheme:

xn+1 = arg min
x
G(x, xn) = Sτ (xn +AT b−ATAxn)

This is known as the Iterative Soft Thresholding Algorithm (ISTA) but it is
slow.

F (xn)− F (x̄) ≤ C1‖x0 − x̄‖22
n

Sergey Voronin Regularization techniques 66/85

Fast-ISTA (Nesterov; Beck and Teboulle)

y0 = x0 , t1 = 1 , xn+1 = Sτ (yn −AT (Ayn − b))

tn+1 =
1 +
√

1 + 4t2n
2

yn+1 = xn +
tn − 1

tn+1
(xn − xn−1)

Much Faster Convergence

F (xn)− F (x̄) ≤ C2‖x0 − x̄‖22
(n+ 1)2

FISTA speedup trick above can be applied to different algorithms.

Other Approaches

◦ Coordinate Descent: Update one coordinate at a time.

◦ Dual Space: work with dual of ||x||1.

◦ Smooth Approximation: replace ||x||1 by something smooth.

Sergey Voronin Regularization techniques 67/85

Dual Space

Definition

The dual of a norm || · || on RN is defined for any y ∈ RN as,

||y||∗ = max
x∈Rn,x 6=0

〈y, x〉
||x|| .

Lemma

The dual of ||x||1 =
N∑
k=1

|xk| is ||y||∞ = maxi [|yi|]

Dual space algorithm procedure:

(1)
[
min
x
f(x) s.t. Ax = b

]
→ L(x, y) = f(x) + yT (b−Ax)

(2) g(y) = min
x
L(x, y)→ ȳ = arg max

y
g(y)

(3) x̄ = arg min
x
L(x, ȳ)

Sergey Voronin Regularization techniques 68/85

min ||x||1 s.t. Ax = b (DALM [Yang, Zhang. 2011])

L(x, y) = ||x||1 + yT (b−Ax)

Dual problem:[
max
y

bT y s.t. ||AT y||∞ ≤ 1

]
→
[
min
y
−bT y s.t z = AT y, ||z||∞ ≤ 1

]
Augmented Lagrangian:

min
x,y,z

Lµ(y, z, x) := −bT y − xT (z −AT y) +
µ

2
‖z −AT y‖22 s.t. ‖z‖∞ ≤ 1.

We can differentiate L with respect to each variable:

∇xLµ(x, y, z) = AT y − z
∇yLµ(x, y, z) = −b+Ax+ µA(AT y − z)
∇zLµ(x, y, z) = −x+ µ(z −AT y).

We alternate with the different updates and increase µ.

Sergey Voronin Regularization techniques 69/85

Sparse Reconstruction

◦ Start with sparse x. Set y = Ax+ ν where A is a sample matrix, ν is
noise.

◦ Solve x̄ = arg minw ||Ax− y||22 + Φ(x) and compare x̄ to original x.

◦ Use continuation strategy for τ , starting close to ||AT y||∞ and decreasing
until ||Ax̄− y||2 ≈ ||ν||2.

0

20

40

60

80

100

SVDS

−50

0

50

INPUT

0

50

100

150

200

250
RESIDUALS VS TAU

parameter values

||
A

x
 −

 b
||

1
2
N

Image Reconstruction

◦ Start with vectorized image x.

◦ Obtain samples with sensing matrix A: y = Ax+ ν where ν is some
Gaussian noise.

◦ Recover x via x̄ = arg minx ||Ax− y||22 + Φ(x).

Sergey Voronin Regularization techniques 70/85

Wavelet Image Denoising

◦ Start with vectorized image x sparse under some transform W .

◦ Obtain y = x+ ν where ν is some Gaussian noise.

◦ Denoise by solving w̄ = arg minw ||W−1w − y||22 + Φ(w). Set x̄ = W−1w̄.

Image Deblurring

◦ Start with vectorized image x sparse under some transform W .

◦ Obtain y = AHx+ ν where A is a sample matrix, H is a blur matrix and
ν is noise.

◦ Solve w̄ = arg minw ||AHW−1w− y||22 + Φ(w) and compare x̄ = W−1w̄ to
the original x.

Sergey Voronin Regularization techniques 71/85

New work in iterative algorithm development

Variable Thresholding Function [with H. Woerdeman, 2012]

Vρ,τ (a) =


a− (2ρ− τ), a ≥ τ ;
2(a− ρ), ρ < a < τ ;
0, −ρ ≤ a ≤ ρ;
2(a+ ρ), −τ < a < −ρ ;
a+ (2ρ− τ), a ≤ −τ .

Notice that when ρ = τ above, Vτ,τ (a) = Sτ (a). Also, when ρ = τ
2
, the large

entries are not penalized.

Sergey Voronin Regularization techniques 72/85

We proceed from soft to firm thresholding (convex to non-convex
optimization):

⇒

Iterative Variable Thresholding Algorithm

xn+1 = Vρn,τ (xn +AT b−ATAxn)

with ρ0 = τ and ρn → τ
2

as n→∞.

FIVTA

y0 = x0, xn = Vρn,τ (yn +AT (b−Ayn)),

yn+1 = xn +
tn − 1

tn+1
(xn − xn−1)

Sergey Voronin Regularization techniques 73/85

Numerical Advantages of IVTA/FIVTA schemes

Faster Convergence:

0

20

40

60

80

100

SVDS

−50

0

50

INPUT

0

50

100

150

200

250
RESIDUALS VS TAU

parameter values

||
A

x
 −

 b
||

1
2
N

0.5 1 1.5 2 2.5
0

20

40

60

80

100

PERCENT ERRORS

0.5 1 1.5 2 2.5
0

200

400

600

800

1000

NUM ITERATIONS

Better wavelet image denoising:

Sergey Voronin Regularization techniques 74/85

p-thresholding with R. Chartrand (2013)

(Sτ (x))k = sgn(xk) max(0, |xk| − τ)

(Rτ,p(x))k = sgn(xk) max(0, |xk| − τ |xk|p−1)

xn+1 = Rτ,p(xn +AT b−ATAxn)

Sergey Voronin Regularization techniques 75/85

Convolution smoothing (with G. Ozkaya and D. Yoshida)

Approximate mollifier; smooth out absolute value |t| with bump function:

f(t) =
1

2πσ2
e

−t2
2σ2 , g(t) = |t| , erf(x) =

2√
π

∫ x

0

e−u
2

du

|t| ≈ (f ? g)(t) =

∫ ∞
−∞

f(s)g(s− t) ds = terf

(
t√
2σ

)
+

√
2

π
σe

−t2
2σ2

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

−0.5 0 0.5
0

1

2

3

4

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

F1(x) = ‖Ax− b‖22 + 2τ‖x‖1

≈ H1(x) = ‖Ax− b‖22 + 2τ
N∑
k=1

(
xk erf

(
xk√
2σ

)
+

√
2

π
σe

−x2k
2σ2

)

Sergey Voronin Regularization techniques 76/85

∇x [H1(x)] = 2AT (Ax− b) + 2τ

{
erf(

xk√
2σ

)

}
k=1,...,N

∇2
x [H1(x)] = 2ATA+

4
√

2τ

σ
√
π
Diag

(
exp

(
− x2

k

2σ2

)
− x2

k

2σ2
exp

(
− x2

k

2σ2

))

Can generalize to non-convex min (p < 1).

Fp(x) = ‖Ax− b‖22 + 2τ

(
n∑
k=1

|xk|p
) 1
p

≈ Hp(x) = ‖Ax− b‖22 + 2τ

(
n∑
k=1

φpσ(xk)

) 1
p

where v(x) and w(x) depend on erf(x).
Sergey Voronin Regularization techniques 77/85

Sergey Voronin Regularization techniques 78/85

Re-weighted least squares (with I. Daubechies, 2012, 2016)

Use a weighted two norm: ||x||2,w =

N∑
k=1

wkx
2
k. Weight based on xn:

||x||1 =
N∑
k=1

|xk| =
N∑
k=1

x2
k

|xk|
≈

N∑
k=1

x2
k√

(xnk)2 + (εn)2
=

N∑
k=1

wnkx
2
k

Iteratively Reweighted Least Squares MM Algorithm

∂

∂xk

(
||Ax− b||22 − ||A(x− xn)||22 + ||x− xn||22 + 2τ

N∑
l=1

wnl x
2
l

)
= 0

⇒ −2(AT b)k + 2(ATAxn)k + 2xk − 2xnk + 4τwnkxk = 0.

xn+1
k = (arg min

x
G(x, xn, wn, εn))k

=⇒ xn+1
k =

1

1 + 2τwnk

(
xnk + (AT b)k − (ATAxn)k

)

Sergey Voronin Regularization techniques 79/85

Generalization of the Objective Functional

Instead of ||Ax− b||22 + 2τ ||x||1, we generalize to:

||Ax− b||22 + 2

N∑
k=1

λk|xk|qk for 1 ≤ qk ≤ 2

min(|x|q + |y|q)
1
q for q = 2,q = 1,q = 0.5.

||x||1 =

N∑
k=1

|xk| =
N∑
k=1

x2
k

|xk|
≈

N∑
k=1

x2
k√

(xnk)2 + (εn)2

|xk|qk ≈
x2
k

((xnk)2 + (εn)2)
2−qk

2

Sergey Voronin Regularization techniques 80/85

Simple derivation of IRLS scheme

Using the Majorization-Minimization setup:

xn+1
k =

(
arg min

x
G(x, xn, wn, εn)

)
k

=
1

1 + qkλkwnk

(
xnk + (AT b)k − (ATAxn)k

)
wnk =

1

((xnk)2 + (εn)2)
2−qk

2

; εn = min

(
εn−1,

(
‖xn − xn−1‖2 + αn

) 1
2

)
for the generalized functional

arg min
x

{
‖Ax− b‖22 + 2

N∑
k=1

λk|xk|qk
}

for 1 ≤ qk ≤ 2

Sergey Voronin Regularization techniques 81/85

Feature extraction for Geophysical models

Min=−1.0117

Max=2.0132

−1 −0.5 0.0 0.5 1 0 1 2
0

0.5

1

1.5

2

2.5

3
x 10

6 numbers of different coefficients in WT

Min=−0.35581

Max=1.4201

−1 −0.5 0.0 0.5 1

Min=−1.7201

Max=1.2038

−1 −0.5 0.0 0.5 1

Min=−1.2956

Max=0.91438

−1 −0.5 0.0 0.5 1

Expand model in a wavelet basis

Let w = Wx and x = (mj) = W−1w. Then Ax = b =⇒ AW−1w = b.

bi =
N∑
j=1

Ki,jmj =
N∑
j=1

Ki,j

(
N∑
k=1

W−1
j,kwj

)
=

N∑
j=1

N∑
k=1

Ki,jW
−1
j,kwj

Hence, for the discretized minimization problem, we can solve:

w̄ = arg min
w

{
‖AW−1w − b‖22 +

N∑
k=1

θ(wk, λk)

}
; x̄ = W−1w̄

Sergey Voronin Regularization techniques 82/85

YAMPA Support Detection (with A. Lodhi and W. Bajwa,
2016)

CoSaMP type of method with matrix dependent threshold. Threshold
derived based on assuming high probability of correct support in first iteration.

Worst-Case Coherence: µ(A) = max
i,j;i6=j

∣∣〈ai,aj〉∣∣, and

Average Coherence: ν(A) =
1

n− 1
max
i

∣∣∣ ∑
j:j 6=i

〈ai,aj〉
∣∣∣, (16)

Threshold: λs = c1µ‖rs‖2 + c2ν
√
k̂‖rs‖2, (17)

Sergey Voronin Regularization techniques 83/85

Reconstruction errors for 1000× 1000 Gaussian random matrices with rapid
singular value decay and 0 and 300 approximately correlated columns.

0.2 0.4 0.6 0.8 1

C1s

0.2

0.4

0.6

0.8

1

C
2
s

ERRORS YAMPA

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

C1s

0.2

0.4

0.6

0.8

1

C
2
s

SUPPORT SIZES

0

100

200

300

400

500

0.2 0.4 0.6 0.8 1

C1s

0.2

0.4

0.6

0.8

1

C
2
s

ERRORS YAMPA

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

C1s

0.2

0.4

0.6

0.8

1

C
2
s

SUPPORT SIZES

0

100

200

300

400

500

Sergey Voronin Regularization techniques 84/85

Thanks!
Regularization, wavelets, big matrices. Low rank matrix approximations can be
computed efficiently using existing software and applied to various inverse
problems. Various open problems.

◦ S. Voronin and P.G. Martinsson. RSVDPACK: An implementation of
randomized algorithms for computing the singular value, interpolative,
and CUR decompositions of matrices on multicore and GPU
architectures, 2016.

◦ S. Voronin and P.G. Martinsson. Efficient algorithms for CUR and
Interpolative Matrix Decomposition, 2016.

◦ S. Voronin and I. Daubechies. An iteratively reweighted least squares
algorithm for regularization with sparsity constraints, 2016.

◦ P.G. Martinsson and S. Voronin. A randomized blocked algorithm for
efficiently computing rank-revealing factorizations of matrices, 2015.

◦ S. Voronin, D. Mikesell, and G. Nolet. Compression Approaches for the
Regularized Solutions of Linear System from Large-Scale Inverse
Problems, 2015.

◦ S. Voronin, D. Mikesell, I. Slezak, and G. Nolet. Solving large
tomographic linear systems: size reduction and error estimation, 2014.

Sergey Voronin Thanks 85/85

	Introduction
	Geotomography
	Regularization
	Sparse signal recovery
	Image enhancement and compression
	Model fitting
	Matrix compression
	Low rank decompositions
	Randomized algorithms for low rank matrix factorizations
	Application to model order reduction
	Regularization techniques
	Thanks

