
Multi-Channel Similarity Based Compression

Sergey Voronin1

Correspondence: sergey.voronin@outlook.com, United States.

DOI: 10.5539/cis.v13n1p80

Abstract

Many situations arise where data is collected continuously across multiple channels or over multiple similar subjects. In

many cases, transmission of the data across all channels is necessary, but the process can be made more efficient by making

use of present similarity between data across different channels. We present here a combined compression approach

which exploits approximate linear dependence and high correlation coefficient values between pairs of transformed and

sorted channel data vectors. By exploiting this similarity, substantial compression gains can be achieved compared to

compression of data per each individual channel.

Keywords: similarity compression, interpolative decomposition, high correlation modeling.

1. Introduction

Data compression is of ever growing importance, with increasing data sizes driven by the use of high sensitivity sensors

recording in high definition formats. There are many examples of multi-channel data which needs to be stored and/or

transmitted for analysis such as recordings with acoustic arrays or medical sensors. Two particular examples we will

analyze are acoustic recordings and electrocardiogram (ECG) data. In both cases, there are many sets of long data vectors

of floating point numbers, which exhibit some similarity when plotted. Storing these vectors individually for each channel

and even compressing them with e.g. deflate or Burrows-Wheeler type lossless methods, would yield large output sizes.

However, there are two similarity aspects which can be exploited. One is approximate linear dependence. When these

vectors across multiple channels are put together in a matrix, the singular value decay would typically be nonlinear.

Specialized low rank factorizations such as the Interpolative Decomposition can be adapted to this purpose (Voronin &

Martinsson , 2017). In case the data is lagged from channel to channel, such as in case of acoustic recordings made with

sensors a significant distance apart, lag adjustments can be performed prior to matrix formation and small portions of

data per channel can be retained for separate processing. The other aspect which can be exploited is high correlation of

transformed and sorted data (Gutton et al. , 2007). In many cases, for every channel, the absolute values of the sorted

transform coefficients would display an exponentially decaying shape. Upon application of the log transformation, the

decay becomes approximately linear and a high correlation between nearby pairs of coefficients can be exploited via a low

order polynomial model for the data of one of the channels in terms of the other. To improve performance, the coefficient

curve can be subdivided in several parts, and the log transformed portions can be separately fitted with respect to the

corresponding part of one of the retained transformed reference signals.

1.1 Acoustic and ECG Examples

Some examples to which our approach is applicable come from generated acoustic and ECG data sets. In particular, the

multi-channel acoustic recording system is simulated by means of the k-wave (Treeby & Benjamin , 2010) tools (http:

//www.k-wave.org) and the ECG data was obtained from the PhysioNet (Moody et al. , 2001) (https://physionet.

org/content/ptbdb/1.0.0/) database. Examples are shown in Figure 1. There, a sample acoustic geometry is shown

with a main emitter source, nearby interference, and receiver positioning (arranged as a vertical array of black dots on

the right). Some of the measured channels are then plotted. Also shown are the processed ECG signals from the above

database coming from a multi-patient data set. Throughout this document we refer to channel as an individual entity,

which can be a physical object (such as a microphone recorder) or patient for which data is obtained. The goal at hand is

to store floating point data efficiently across all channels.

1.2 Singular Value Decay and Transformed Signal Correlation

For both applications, a combined strategy taking advantage of high degree of linear dependence and correlation under

transformation can be employed to improve on the simple compression ratio, obtained by lossless compressing the floating

point data for each channel. Figure 2 plots the associated singular value decay and pairwise correlation values under

transformation of the first 350 ECG signals, of a set of 550. That is, we have taken a matrix consisting of 550 rows,

with one ECG signal per row, and computed its singular values. We observe that the decay is nonlinear, suggesting that a

suitable low rank factorization can be utilized to store the data more efficiently. Next, we compute a four level CDF 9/7

Wavelet transform of each data row. We then sort the absolute values of the resulting coefficients for each row, take the

log transformation, and compute their pairwise correlation coefficient values. We can see that many pairs of transformed

1

and sorted coefficient vectors have high values (> 0.95), which suggests that the coefficients vectors for a few channels

can be stored and the rest represented by a linear (ax+ b) or low order polynomial model with respect to one of the stored

vectors x. With the additional storage of the permutation set from the sort and the vector of signs, the original transformed

coefficients for the remaining channels can be recovered.

2. Method

We present here a combined approach based on the observations noted in section 1.2. We discuss the relevant low

rank factorization and the approaches for high correlation based compression via low order polynomial modeling against

retained pillar data.

2.1 Interpolative Decomposition

There are several available matrix decompositions which can exploit numerical rank deficiency in a matrix of similar

signals (Voronin & Martinsson , 2017). We review here the low rank singular value decomposition (SVD) and the inter-

polative decomposition (ID), illustrated in Figure 2. The rank-k SVD (Ak = UkΣkVT
k

) of a general m × n matrix A yields

an optimal approximation of rank k to A, in the sense that ‖A − Ak‖ ≤ ‖A − Mk‖ for any rank k matrix Mk, both in the

operator (spectral) and Frobenius norms. However, with the use of the SVD, the eigenvectors may often be difficult to

interpret and do not contain direct entries of the signals in the matrix. The ID is a different factorization based on the QR

decomposition, which returns a factor containing a selection of columns (or rows) of the original matrix. We can start

with the pivoted QR decomposition, AP = QS , which can be written as A(:, Jc) = QS for a column index Jc. From this,

the rank-k ID can be efficiently constructed, with details given in (Voronin & Martinsson , 2017). Below we outline the

main steps from expanding the Q and S factors into portions:

A(:, Jc) =
[

k r−k

m Q1 Q2

]

×

[

n

k S 1

r−k S 2

]

= Q1S 1 + Q2S 2.

S 1 =
[

k n−k

k S 11 S 12

]

and S 2 =
[

k n−k

k 0 S 22

]

, such that S =

[

k n−k

k S 11 S 12

r−k 0 S 22

]

.

Inserting the above expressions for S 1, S 2 into A(:, Jc), we get:

A(:, Jc) = Q1

[

S 11 S 12

]

+ Q2

[

0 S 22

]

=
[

k n−k

m Q1S 11 Q1S 12 + Q2S 22

]

.

Next, we set C := A(:, Jc(1 : k)) = Q1S 11, so that:

Q1S 1 =
[

Q1S 11 Q1S 12

]

= Q1S 11[Ik S −1
11 S 12] = C [Ik Tl],

where Tl is the solution to the matrix equation S 11Tl = S 12, a set of matrix-vector systems. This results in the approximate

factorization:

A ≈ CVT , where C = A(:, Jc(1 : k)), VT =
[

Ik Tl

]

PT ,

with C a subset of the columns of A based on the pivoting strategy in the QR factorization and the remaining V factor a

well-conditioned matrix, a portion of which is a diagonal identity sub-matrix. The permutation matrix P does not need be

formed explicitly and is represented by vector Jc. With access to A, this vector and matrix Tl give complete information

for the ID. The V factor can be constructed as below:

I i n v=z e r o s (l e n g t h (I) , 1) ;

f o r i =1: l e n g t h (I) [i n d = I (i) ; I i n v (i n d) = i ;] end ;

V1 = [I k ; T ’] ; V = V1 (I i n v , :) ;

The runtime can be accelerated by employing randomization at the expense of accuracy, which essentially projects the

matrix A from the left (RA) and uses the smaller matrix for the ID. The alternative is to build a QB factorization (Martins-

son & Voronin , 2016) and obtain an ID from that which allows rank to be chosen based on specified tolerance. For m× n

input A, C is m×k and V is n×k. Notice that when we apply the ID to the matrix transpose, we get AT ≈ A(Jr(1 : k), :)ṼT ,

where A(Jr(1 : k), :) represents a subset of k rows of the matrix, corresponding to the employed pivoting strategy. The use

of the ID allows us to retain only a subset of all available channels via direct application to the transpose of the matrix

2

containing the channel data, one per row. Of course, the V factor (or Tl and Jc or Jr) also needs to be stored. It should be

noted that the data may need some pre-processing prior to being inserted into the matrix, such as in the case of substantial

lag between channels. In that case, data vectors can be shifted and adjusted with respect to one another so that a portion

of each channel vector would separately remain along with the ID factors.

2.2 High Correlation Modeling

Once the ID has been used to potentially reduce the number of retained channels, high correlation modeling can be

employed to further decrease floating point storage requirements. The approach described here is loosely based on the

method with the Fourier transform described in (Gutton et al. , 2007). In (Goffman-Vinopal & Moshe , 2002), the authors

describe correlation compression for color image data. Here, we describe the use of the sorted and scaled Wavelet and

log transforms, portion splitting, and low order polynomial modeling for a set of floating point signals. First, a matrix

M = [w1; . . . ; wm] is formed with wi = Thr(Wri). W can represent a CDF 9/7 or other Wavelet transform (Rao , 2002),

with the optimal choice depending on the smoothness properties of the data. Thr() is an optional hard or soft thresholding

operation (Kowalski , 2014), which retains only a portion of the largest by absolute value coefficients, resulting from

the transformation W applied to a row vector (floating point channel data) ri, such that ri ≈ W−1Thr(Wri) to a specified

tolerance, corresponding to classic lossy signal compression in the signal processing sense. Clearly, if we are able to

approximately reconstuct M from some compressed set, then we can obtain the original channel data by applying the

inverse Wavelet transform to each row. Once M is constructed, three matrices are formed: M̄,Mnum,Msgn. To do so, a

descending order sort is applied to the absolute values of the transformed coefficients: [vi, Ii] = sort(abs(wi), ‘d
′) to get

the corresponding sorted coefficient set to be stored in row i of M̄ and the integer permutation index information Ii (for

where the values occurred in the original unsorted Wavelet transformed vector) to be stored in Mnum. The signs of wi(Ii)

(the permuted coefficients) are stored in Msgn as a bit array of 0s and 1s for each channel, corresponding to negative or

positive transform coefficients in the permuted order. If we plot the entries of vi, then for every channel i, they would

have a similar, exponentially decaying shape as in Figure 2, and hence roughly linear, under a log transform. We can

scale each vector vi by the max entry, and save in addition, one scaling factor per row (or modeled portion), so that the

log values of the transformed and sorted coefficient vectors for all channels start at 0. The basic idea to high correlation

compression is to store vi only for some i (forming the so called reference pillar set), and for the other i, use a low order

model to model log(vi) with respect to the log of one of the retained pillar vectors (of sorted absolute values of the Wavelet

coefficients). Then, for the non-pillar channels, only the fitting coefficients are stored in place of the floating point vectors

vi. To reconstruct the original signal ri for each channel, we employ the linear model reconstruction and the integer index

and sign sets to form the approximate Wavelet coefficients of correct sign, followed by the application of the inverse

transform. The pillar vectors can either be chosen as a small subset of all available data or as one or more members of a

cluster, when waveform clustering is applied to cluster the data in groups. In that case, high correlation modeling can be

performed separately over each cluster.

2.3 Compression and Decompression Algorithms

The general compression and decompression approaches are summarized in Algorithms 1 and 2, using a mix of lossy

compression (as achieved via the ID, thresholding, and high correlation modeling) and later, optional lossless compression

of the remaining parts. First, the ID is applied on the transpose of channel data M = [r1, . . . , rn]T , resulting in a subset

of channels C (rows of M) and an extra factor V (typically small compared to C). The subsequent steps aim to compress

the data in C via high correlation based modeling. For this, the three M matrices are formed from the data in C. Notice

that Mnum and Msgn are integer and bitwise matrices with lower storage cost, while M̄ contains the floating point sorted

absolute values of the transform coefficients, only a portion of which will be retained. Some of the rows of M̄ are retained

in floating point format in E as pillar data. The rest of M̄ is not stored. Choosing the pillar data can be accomplished

by keeping a set portion of M̄ as reference. Alternatively, rows can be added in blocks until a specified error tolerance is

met or clustering can be used to make a set of pillars (e.g. taking the first member of each cluster). The resulting matrix

E contains the pillar signal transformed and sorted absolute valued Wavelet coefficients against which other channels

coefficients will be fitted. For the rest of rows j of M̄, stored in matrix F, are the coefficients for a fitting model with

respect to log(M̄(i, :)) in E (the optimal reference model to fit against log(M̄(j, :))), the scaling factors, and the index i to

the reference in E. Once done, matrix F contains a small amount of floating point data per non-pillar channel and the

combined approach can represent substantial savings over storing the floating point data for each channel. As a final step,

lossless compression is employed over all retained data, including the integer and bitwise sets Mnum and Msgn and the V

factor from the ID. Burrows-Wheeler based bzip2 can be used for any of the remaining data, and special methods e.g.

(Ratanaworabhan et al. , 2006), can be employed for integer permutation sets. To improve performance, the data in M̄

can be subdivided into several portions for each row and fitted separately with respect to the reference data in E (such that

different portions of a row can be fitted against portions of possibly different pillar vectors). A simplified version of the

transform correlation based encoding code is shown below, where a set of data is retained as reference pillars:

3

% t r a n s f o r m and s o r t da ta per c h a n n e l from C

% s t o r e abs v a l s , p e r m u t a t i o n i n f o , s i g n s , s c a l i n g f a c t o r a r r a y

wj = wavecdf97 (xj , 4) ;

[v a l s , i n d s] = s o r t (abs (wj) , ’ d ’) ; s f a c t o r s (j) = max (v a l s) ;

M bar (j , :) = v a l s / s f a c t o r s (j) ;

M num (j , :) = i n d s ;

M sgn (j , :) = s i g n (wj (i n d s)) ;

% t a k e a p o r t i o n o f M bar as p i l l a r da ta

E = M bar (1 : nsave , :) ;

% encode t h e r e s t w i t h r e s p e c t t o saved s i g n a l s

f o r j =(n save +1) : k

s i g n e w = l o g (M bar (j , :)) ;

e r r s = z e r o s (nsave , 1) ;

% choose b e s t r e f e r e n c e s i g n a l t o use

f o r i n d =1: nsave

s i g r e f = l o g (E (ind , :)) ;

p = p o l y f i t (s i g r e f , s ig new , 2) ;

y f i t = p (1) ∗ s i g r e f . ˆ 2 + p (2) ∗ s i g r e f + p (3) ;

e r r v a l = norm (y f i t − s i g n e w) / norm (s i g n e w) ;

i f e r r v a l < m i n e r r

p1u = p (1) ; p2u = p (2) ; p3u = p (3) ; p ind = i n d ;

m i n e r r = e r r v a l ;

end

end

% s t o r e model f i t and r e f e r e n c e t o p i l l a r s i g n a l i n E

F (j , :) =[p1u , p2u , p3u , s f a c t o r s (j) , p ind] ;

end

For decompression, assuming the use of a second order model, given model terms a j and b j and scaling factor s j in F

and the index i to the reference data in matrix E (corresponding to the reference channels for which the transformed

and sorted coefficients are stored), we can compute v j = s j exp
(

a jx
2
i
+ b jxi + c j

)

with xi = E(i, :) to model the sorted

absolute values of the coefficients for channel j. Then, to construct approximate coefficients of the Wavelet transformed

result for each channel (unsorted and with proper sign), we must make use of the permutation index and sign information

stored in Mnum and Msgn. To do so, we initialize an empty vector for each channel, and insert v j in entry specified by

index Mnum(:, j) with sign specified by Msgn(:, j). Following the construction of the transformed vector with the correct

sign entries, the inverse transform can be applied to yield the approximate signal for each channel. The sequence of

steps is summarized by the pseudocode below, where the log model is fitted with respect to the best reference, then the

coefficients are inserted in correct order with relevant sign, and subsequently inverse transformed. If the rows of M̄ were

split in several portions, then F would be composed of several sets of records for the different models of the respective row

portions and the reconstructions for each portion would be performed separately. A simplified version of the code appears

below, where we read the pillar and model data, evaluate the second order polynomial model, and use the permutation and

sign information to construct the approximate transform coefficients for the channel.

% We must r e c o v e r a l l b u t t h e p i l l a r s i g n a l s i n E

f o r j =(n save +1) : k

% read s t o r e d model and r e f e r e n c e t o p i l l a r

m o d e l d a t a 1 = F (j , :) ;

% g e t p i l l a r da ta

s i g r e f t h r = l o g (E (m o d e l d a t a 1 (5) , 1 : round (N))) ;

% e v a l u a t e p o l y n o m i a l model and r e s c a l e

s i g r e c o v = s f a c t o r s (j) ∗ exp (m o d e l d a t a 1 (1) ∗ s i g r e f t h r . ˆ 2 + m o d e l d a t a 1

(2) ∗ s i g r e f t h r + m o d e l d a t a 1 (3)) ;

% c o n s t r u c t t r a n s f o r m c o e f f i c i e n t s

% based on p e r m u t a t i o n and s i g n i n f o and i n v e r t

s i g r e c o v w t = z e r o s (1 ,N) ;

4

f o r s =1:N

i f M sgn (j , s) > 0

s i g r e c o v w t (M num (j , s)) = s i g r e c o v (s) ;

e l s e

s i g r e c o v w t (M num (j , s)) = − s i g r e c o v (s) ;

end

end

s i g r e c o v i w t = wavecdf97 (s i g r e c o v w t , −4) ;

end

The use of the ID above improves compression ratio by reducing the number of retained channels. Similarly, splitting

the transformed and sorted absolute value coefficients into several portions before modeling can significantly improve

performance. This can be done in four parts as below or adaptively based on the behavior of the sorted absolute values.

s i g r e f 1 = l o g (E (ind , 1 : round (N / 4))) ; s i g r e f 2 = l o g (E (ind , (round (N / 4) +1) : round (N

/ 2))) ; . . . ; s i g r e f 4 = l o g (E (ind , (round (3∗N / 4) +1) : end)) ;

Notice that the transformed and sorted absolute values of the Wavelet transform of channel data when plotted (see e.g.

the plot in Figure 2) generally exhibit the greatest mean curvature (change) in the first half or quarter of the interval and

it is the largest coefficients in that region that are most critical to model accurately for good reconstructions. For this

reason, it may be beneficial to split the data non-uniformly, utilizing more portions for the first half of the interval. The

advantage of this splitting is that it computes different model coefficients per portion and allows different portions to be

fitted with respect to different pillar data vectors. Another method which we discuss in the examples is to precluster the

original channel data into several parts (clusters) and take one or more members of each cluster to be the pillar data. A

sample clustering sequence in R is shown below using a dissimilarity matrix construction between floating point channel

data pairs based on dynamic time warping metrics (Oates et al. , 1999; Mori et al. , 2016). High correlation modeling

compression can then be performed over each cluster.

f o r (i i n 1 : n c h a n n e l s) {

f o r (j i n 1 : n c h a n n e l s) {

s i = s e n s o r m a t [i ,] ; s j = s e n s o r m a t [j ,] ;

d i s t 1 = ACFDistance (s i , s j) ; d i s t 2 = ARLPCCepsDistance (s i , s j) ;

d i s s m a t [i , j] = (d i s t 1+ d i s t 2) /2

}

}

hc <− h c l u s t (d = as . d i s t (d i s s m a t) , method=” c o m p l e t e ”) ;

r e c t . h c l u s t (hc , n c l u s t e r s) ; f o r (cn i n 1 : n c l u s t e r s) { s e n s o r n u m s = hc2 [[cn]] }

In some cases, the behavior of signals may change significantly over time. Thus, it is plausible to first subdivide the signals

over all channels into several portions and then cluster and compress these portions separately. Similarly, quite (low

amplitude areas) of the channels may be removed and separately processed. Generally, the splitting can be accomplished

with the use of Q1,Q2,Q3 quartile stats. First, the data is filtered so that every value below Q1 in absolute value is set to

zero. Then, Q̃1, Q̃2, Q̃3 is calculated for the absolute values of the new data. We can set IQR = Q̃3 − Q̃1 and look for data

indices whose values exceed Q̃3 + αIQR, with α ∈ [0.5, 1.5]. Then, a gradient map can be made of the large index set.

The flat areas of the peaks of the gradient map are good cut locations for the data, as they correspond to indices where the

values jump in magnitude (see Figure 4 for an example). Making splits in these regions makes the retained data portions

have entries with significant amplitudes. The combined approximate linear dependence and high correlation modeling

compression approach can then be applied separately (and in parallel) for each resulting set of channel data regions.

5

Algorithm 1. Compression sequence.

Data: Floating point data from multiple channels. Tolerance and pillar block parameters (ǫ1,2,3, L), Wavelet

transform, and thresholding function.

Result: Compressed representation of data for all channels.

Insert floating point data into matrix A, one channel per row.

Perform ID decomposition on the transpose of the matrix, AT ≈ A(Jr(1 : k), :)V with rank chosen per ǫ1 tolerance.

Set C = A(Jr(1 : k), :) to be the subset of retained channels.

Form matrices M̄,Mnum,Msgn from C.

for j = 1, . . . , k do

Compute w j = trans f orm(C(j, :))

[v j, I j] = sort(abs(w j), ‘d
′)

Store permutation inds I j from sort and signs of w j(I j) in Mnum(j, :) and Msgn(j, :).

Set M̄(j, :) = Thr(v j) per ǫ2.

end

Set ME = 1e6, i = 0. Initialize E to hold subset (the pillars) of M̄ and F to hold linear fitting information.

while ME > ǫ3 do

Add C(i + 1, . . . , i + L, :) to E.

for j = i + L + 1, . . . , k do

Compute low order polynomial fit model between log(M̄(j, :)) and each of the saved channels log(E(i, :)).

Record scaling factor s j, modeling coefficients a, b and index to pillar model corresponding to smallest

error against E(i, :) in F(j, :) = [a, b, s j, i].

Record reconstruction error as e j.

end

Let ME = max(e j), i = i + L.

end

Lossless compress saved floating point data E, fitting coefficient set F, as well as the integer and bit sign matrices

Mnum and Msgn and ID matrix V .

Algorithm 2. Decompression sequence.

Data: Compressed data set from Algorithm 1.

Result: Approximate floating point data for each channel.

Run lossless decompression routines on E, F, Mnum, Msgn, and V .

Utilize the resulting matrices to reconstruct C. To do so, the sorted magnitude coefficients are reconstructed by

means of the evaluated model with x from the specified (best fit row) in E. The vector is then scaled and

exponentiated, and its entries are inserted into appropriate locations using Mnum index set, with appropriate sign

assigned from the bitwise Msgn information. The inverse transform is then applied over both the reconstructed

transform data and pillar data in E to yield the approximate select channel data C.

Multiply C by V to obtain approximation to AT .

Extract floating point channel information from the columns for AT .

3. Numerical Results

We present results from two applications: medical ECG signals and synthetic acoustic data receiver. As discussed in the

introduction, both data sets contain data for multiple channels. For the ECG data set, data from 25 patients was used, for a

total of 1020 records, each of length 115200 samples. In double precision format, the storage size for the 1020 × 115200

matrix is 940 MB. With a rank 400 ID (resulting in a relative error of 3.7%), the retained channels take up 368 MB,

along with a small dense matrix V of size 1020 × 400. Following the ID computation, correlation based compression

on transformed and sorted data is performed. That is, the data is first transformed and sorted. The indices and signs are

also recorded. Lossy compression (thresholding) is performed to reduce the size of coefficients retained. This is done, by

looping over every channel and measuring the error that results from retaining only a portion of the largest coefficients.

A suitable portion to retain is then determined over the maximal error over all channels. In our case, 3/4 of the largest

magnitude coefficients were retained in every channel. Next, we save 40 of 400 transformed and thresholded channels

as reference pillars and encode the remaining values in terms of the optimal paired saved channel. In order to improve

6

performance, we have broken up signals in subsets of length 7000. The full matrix for one portion is then 57 MB and

the ID factors (C and V) are 22.4 and 3.2 MB, with average 1.2% error in the approximation to AT . We then divided the

sorted absolute values of the Wavelet coefficients (the decaying exponential curves) into four parts indexed by the sets

(1→ round(N/4)), . . . , (round(3N/4)+ 1→ N), which are separately fitted via a third degree polynomial model based on

the optimal pairing with one of the transformed and sorted reference signals.

Following this, we have the following saved data:

• Saved reference channels 40 × 7000 in double, 2.24 MB.

• Saved sort indices 400 × 7000 in uint32, 11.2 MB.

• Saved entry signs 400 × 7000 in int8, 2.8 MB.

• Small model coefficient and reference signal index array for the 4 transformed signal parts, each of size 400 × 4.

The total size is thus around 16.2 MB, down from 25.6 MB for the ID factors and 57 MB for the original data. Combining

these pieces to cover the entire 115200 sample length requires around 267 MB total storage. Lossless compression can

be used to further compress retained data. Error results for the transformed coefficient set reconstructions per channel are

shown in Figure 3 along with a sample fit of a waveform based on the model derived from one of the 40 retained pillars.

Notice that we can choose to retain less pillars (floating point data) via clustering, as we show in the next example.

In the following test, we show results for a synthetic acoustic application, whereby an array of 29 microphones is recording

the signal from a particular emitter and interference sources. The main setup is shown in Figure 1 (left). Figure 4 shows

a typical signal obtained by one of the microphones, along with its subdivision into 6 parts. Since the measured signal

at a given microphone potentially consists of many samples (as in the example shown), it is reasonable to subdivide the

signal into several portions before employing compression. If the signal has both active (high magnitude) and relatively

flat (low magnitude) portions, depending on the emitter and interference source profiles, then a gradient map of the indices

corresponding to large magnitude entries of the floating point vector (e.g. above the third quartile after filtering the small

entries away), can be used to estimate cut locations along the flat areas of the signal, as shown. Once subdivision is

performed, the compression sequence can be performed in parallel over different portions on multi-processor or suitable

multi-core systems, if necessary. In Figure 5, we show one particular portion (#3), as recorded at 4 different sensors.

The pillar selection approach then proceeds by clustering, using all microphone signals from this portion, subdivided in

2000 point portions. In order to accomplish clustering, a dissimilarity matrix is first constructed, which shows the relative

distance between pairs of recorded microphone signals. The distance approach is based on dynamic time warping (DTW)

(Oates et al. , 1999) and auto regressive integrated moving average (ARIMA) process derived metrics (the average of

ACF and ARLPCCeps distances from the TSdist package in R was used (Mori et al. , 2016)). The number of clusters

was set to 6 and the resulting dendrogram shows the resulting microphone distribution with respect to different clusters.

For each cluster, only the transformed coefficients of the first member (the pillar) were saved and the rest of the signals

were encoded with respect to the pillar using the described technique. The resulting final error distribution is shown in the

same figure along with per cluster statistics consisting of the original floating point size, the similarity compressed size,

and the final size following Burrows-Wheeler based and entropy lossless compression. Notice that the second problem

shown here is more challenging for two reasons: the more oscillatory (higher frequency) nature of the signals and the fact

that encoding is done with respect to only one pillar, unlike the ECG example, where 40 pillar signals were saved and the

optimal reference was used in each case. We can instead choose to save more than one pillar data per cluster. Figure 6

shows two examples with both the reconstructed signed and properly ordered Wavelet coefficients and the reconstructed

signals (obtained from the inverse transform of the reconstructed Wavelet coefficients), for a higher and lower error case.

As expected, when the Wavelet transform output is more oscillatory, the reconstruction mechanism gives greater error.

Still the final result captures the main features of the signals, with some deviations in the magnitudes. For the signal on the

right of the figure, both the Wavelet coefficient sequence and subsequent signal reconstruction are close to the originals.

In this example, we have also not applied the ID since the full rank of the data matrix is relatively small, but additional

gains are possible with respect to the cluster sizes reported in Figure 5.

7

Figure 1. Example acoustic geometry and measured array signals and scaled and moving averaged ECG signals.

Figure 2. Singular value and pairwise correlation between transformed and sorted coefficients and illustration of the ID.

Sorted magnitudes of transformed signal coefficients.

Figure 3. Reconstruction errors for ECG set and sample reconstructions.

Figure 4. Sample acoustic signal subdivided into portions.

4. Discussion

In conclusion, we have presented an approach useful for the compression of a set of similar time domain signals, such

as those obtained from multiple test subjects (e.g. medical patients) or recorded by multi-channel processing systems.

8

Figure 5. Acoustic signals for one portion, corresponding dissimilarity matrix over all sensors, resulting clustering

dendrogram, and error distributions and per cluster stats: original, similarity compressed, entropy encoded sizes.

Figure 6. Sample transform coefficient set reconstructions (signed and unsorted) and corresponding signal

reconstructions using a low order model with respect to one pillar in a cluster.

The basic approach is to exploit both the linear dependence and correlation of data after transformation and sorting.

The approximate linear dependence between some of the channel pairs can be exploited by means of the interpolative

decomposition, which returns a subset of the data matrix rows when applied to its transpose. The rank can be modified

adaptively based on the desired error tolerance level. Next, the remaining data can be broken up into groups via clustering

and a set of pillar signals can be retained. The absolute values of the transformed and sorted coefficients of the different

signals are then compared to those of the retained pillar data and a low order polynomial model is saved in place of

floating point data, along with sign and index permutation sets in more efficient data types. The original data channels

can then be approximately recovered by means of the model information, the retained sign and integer index sets, and the

inverse transform. Lossless compression can then be applied to the resulting data sets (the ID factor, transformed pillar

coefficients, polynomial model information, and the bitwise sign and integer index sets). The approach is simple and

efficient to employ, adaptive with respect to specified tolerances, and can yield substantial compression gains.

Acknowledgements

We kindly acknowledge the various helpful comments and improvement suggestions from Dr. Asmae Benali and the

journal editor.

9

References

Goffman-Vinopal, L., & Moshe, P. (2002). Color image compression using inter-color correlation. In Proceedings.

International Conference on Image Processing, 2, II-II. IEEE, 2002. https://doi.org/10.1109/ICIP.2002.1039960

Guitton, A., Antonios, S., & Niki, T. (2007). Utilizing correlations to compress time-series in traffic monitoring

sensor networks. In Wireless Communications and Networking Conference, 2007. WCC 207. IEEE, pp. 2479-

2483. IEEE, 2007. https://doi.org/10.1109/WCNC.2007.462

Kowalski, M. (2014). Thresholding rules and iterative shrinkage/thresholding algorithm: A convergence study. In

2014 IEEE International Conference on Image Processing (ICIP), pp. 4151-4155. IEEE, 2014.

https://doi.org/10.1109/ICIP.2014.7025843

Martinsson, P., & Voronin, S. (2016). A randomized blocked algorithm for efficiently computing

rank-revealing factorizations of matrices. SIAM Journal on Scientific Computing, 385, S485-S507.

https://doi.org/10.1137/15M1026080

Moody, G. B., Roger, G. M., & Ary, L. (2001). Goldberger. PhysioNet: a web-based resource for

the study of physiologic signals. IEEE Engineering in Medicine and Biology Magazine, 20(3), 70-75.

https://doi.org/10.1109/51.932728

Mori, U., Alexander, M., & Jose, A. L. (2016). Distance measures for time series in R: The TSdist package. R

journal, 8(2), 451-459. https://doi.org/10.32614/RJ-2016-058

Oates, T., Laura, F., & Paul, R. C. (1999). Clustering time series with hidden markov models and dynamic time

warping. In Proceedings of the IJCAI-99 workshop on neural, symbolic and reinforcement learning methods for

sequence learning, pp. 17-21. Sweden Stockholm, 1999.

Rao, R. (2002). Wavelet transforms. Encyclopedia of Imaging Science and Technology.

https://doi.org/10.1002/0471443395.img112

Ratanaworabhan, P., Jian, K., & Martin, B. (2006). Fast lossless compression of scientific floating-point data. InData

Compression Conference, 2006. DCC 2006. Proceedings, pp. 133-142. IEEE, 2006.

https://doi.org/10.3917/deba.142.0133

Treeby, B. E., & Benjamin, T. C. (2010). k-Wave: MATLAB toolbox for the simulation and reconstruction of

photoacoustic wave fields. Journal of biomedical optics, 15(2), 021314. https://doi.org/10.1117/1.3360308

Voronin, S., & Martinsson, P.G. (2017). Efficient algorithms for cur and interpolative matrix decompositions. Ad-

vances in Computational Mathematics, 43(3), 495-516.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

10

View publication statsView publication stats

