
November 22, 2021 9:48 WSPC/INSTRUCTION FILE ws-ijmssc

International Journal of Modeling, Simulation, and Scientific Computing
© World Scientific Publishing Company

CLUSTERING AND PRESORTING FOR PARALLEL BURROWS
WHEELER BASED COMPRESSION

Sergey Voronin ∗, Eugene Borovikov, Raqibul Hasan

We describe practical improvements for parallel BWT based lossless compressors fre-
quently utilized in modern day big data applications. We propose a clustering based
data permutation approach for improving compression ratio for data with significant
alphabet variation along with a faster string sorting approach based on the application
of the O(n) complexity counting sort with permutation reindexing.

Keywords: Lossless data compression, Burrows-Wheeler transform, data permutation,
fast string sorting.

1. Introduction

Many of the best rated universal lossless compression approaches are based on

Burrows-Wheeler compression, such as bzip2 7,8. This approach consists of several

steps: a Burrows-Wheeler local similarity transform (BWT), followed by a Global

Similarity Transform (typically implemented via a variant of the move to front

(MTF) transform), run length encoding (RLE) for compressing sequences of iden-

tical data and finally entropy coding (EC), such as Huffman or arithmetic coding.

An illustration of the steps 4 is shown in Figure 1. For file sizes above 100 MB,

serial compression implementations are typically not practical. In common parallel

implementations (such as lbzip2), the input file is subdivided in even chunks and

the operations are performed in parallel over the smaller chunks, with the BWT

typically performed over parts of the smaller chunks 5. While this parallel approach

substantially improves runtime, the even splitting can adversly affect the resulting

compression ratio compared to a serial algorithm.

BWT is the first of three most consuming steps of Burrows-Wheeler compression
2. In particular, it consists of string sorting (hence, it’s relative inefficiency, as it

requires by default an O(nlogn) sort) and produces an output with local similarity

structure, with runs of similar characters. The MTF is an essential step performed

prior to entropy encoding (EC). MTF is based on the expectation that once a

symbol is read from the input buffer, it will be read in the local block several more

times, becoming a common symbol. MTF moves the latest encountered symbol to

the front of the list. It can significantly improve EC performance when the local

frequency of symbols changes significantly from region to region in the loaded input

∗Please send correspondence to svoronin@i-a-i.com.

1

November 22, 2021 9:48 WSPC/INSTRUCTION FILE ws-ijmssc

2 Sergey Voronin, Eugene Borovikov, Raqibul Hasan

buffer 1. The BWT and MTF routines simply re-arrange, group, and re-code data

into a same sized output to make it better compressible. RLE provides simple

compression for runs of repeated symbols (typically digits, at the output of MTF)

and entropy coding, typically Huffman or Arithmetic coding encodes the resulting

information with fewer bits. In the case of Arithmetic coding, for example, fractional

representations are used (represented by a single floating point number within the

interval). Of the outlined steps, BWT plays the profounding role in achieving data

compression with the latter RLE and EC steps 9.

In this article, we discuss a simple clustering and presorting strategy, performed

in order to aid compression ratio and runtime, particularly for larger file sizes, for

which parallel compression is beneficial. In particular, in place of a standard subdi-

vision of the input, we outline a data permutation strategy which re-arranges small

blocks of the input based on their content and groups them together into larger

‘megablocks’. These larger, but more homogeneous in content blocks, can then be

compressed more efficiently by the remaining steps, in parallel. The BWT can be

applied over portions of these megablocks, using a counting sort implementation

with permutation reindexing computation and bucketing to accelerate string sort-

ing, a traditionally time consuming operation. The outlined approach is well suited

for the suffix-array implementation of the BWT 10, where sorting on an upper trian-

gular string matrix is performed. An optional byte swapping procedure is discussed

over integer byte blocks prior to the entropy encoding application.

Fig. 1. Illustration of Burrows-Wheeler based compression (steps and single thread timing break-
downs for 20 MB ascii file) .

2. BWT and suffix arrays

The goal of BWT is to reversibly transform the input into a better compressible

form based on string sorting. As an example, the BWT of the string T=‘eat ba-

November 22, 2021 9:48 WSPC/INSTRUCTION FILE ws-ijmssc

Clustering and presorting for parallel burrows wheeler based compression 3

nanas$’ is ‘tsbnne $aaaa’, which has better symbol grouping than the original string

and can be more readily compressed with run length encoding and move to front

and entropy coding steps. The BWT output is the last column of the associated BW

matrix (BWM) consisting of all sorted rotations of the input string. Conventional

sorting (e.g., quicksort) takes O(n log n) average and O(n2) worst case time, which

gets prohibitively expensive for large strings. The BWT can also be computed by

sorting all suffixes of a string. The suffix array provides a lexicographically ordered

list of all the suffixes of a string. For example, the suffixes of ‘blogger’ are: blogger,

logger, ogger, gger, ger, er, r; and the sorting of such a set can be done more effi-

ciently by exploiting its upper triangular matrix structure. For example, the sorted

rotation and the suffix array of the string ’banana$’ are shown in Figure 2. Here,

’$’ represents the end of string (EOF) character, which can be arbitrarily chosen.

In terms of the suffix array represented numerically by S, the i-th character of the

BWT is defined as T [S[i] − 1], if S[i] > 0 and set to the EOF character if S[i] = 0,

with T the input string 9.

Fig. 2. String rotations and suffixes for BWT .

3. Data permutation via clustering

Typically, in parallel compressors (such as lbzip2), the input is divided uniformly in

parts, without examining their contents. The use of data permutation achieved via

clustering, prior to the application of BWT, can bring about significant performance

improvements. We propose to subdivide input data in relatively small blocks, run a

processing and clustering scheme over these data blocks, and then to merge sets of

these blocks into larger megablocks by comparing similarity of their content. These

megablocks are then processed independently by the BWT (which depending on

implementation, can range from O(n2 log n) to linear time complexity with the use

of the suffix array) and can be applied over subblocks of the megablocks, with the

result of the operation compressed by RLE, MTF, and the EC steps, applied over

the BWT result on each megablock. An optional byte swapping procedure can be

inserted in between the MTF and EC steps.

In order to cluster small blocks together, we analyze their symbol frequency

contents. Large input streams often contain blocks with particular symbol distri-

butions, typically limited to a small number of symbols that are characteristic of

each block.

November 22, 2021 9:48 WSPC/INSTRUCTION FILE ws-ijmssc

4 Sergey Voronin, Eugene Borovikov, Raqibul Hasan

Fig. 3. Data permutation via clustering and megablock construction.

For instance, a large multi-lingual text and numerical based document may contain

blocks of text in different languages, some tables with numerals, and possibly im-

ages and other binary content. No matter the symbol distribution, the max value of

each individual unsigned byte will be 255. We propose to subdivide the input into

small blocks using initial even subdivision and compute the approximate symbol

distribution within each small block, represented by a normalized histogram. These

blocks are then clustered together into larger megablocks by comparing these his-

tograms, resulting in megablocks of similar content, as illustrated in Figure 3. That

is, we first chunk the input into small portions, with each portion assigned a number

from 1 to N . We then analyze the individual small blocks and create byte frequency

histograms of their contents, as shown in Figure 4. The byte value range (0 − 255)

should be sufficient for ascii and other files, making the maximum number of bins

per histogram of 256. Optionally, the number of bins could vary, if a different range

is desired for a particular input. To construct the frequency distributions for each

Fig. 4. Normalized 256-bin histograms of different content types that can occur in a single
stream: ENG=English, NUM=Numeric, CYR=Cyrillic, BIN=Binary. Sample dissimilarity ma-
trix between pairs of blocks.

block, the following pseudocode code applies, with the counts array normalized by

the number of (one or more) byte chunks scanned:

whi le not at EOF:
f r ead NUM byte chunks from f i l e i n to b u f f e r array
num = 0 ;

November 22, 2021 9:48 WSPC/INSTRUCTION FILE ws-ijmssc

Clustering and presorting for parallel burrows wheeler based compression 5

f o r each (NUM bytes) in b u f f e r array :
va l = (i n t) b u f f e r [i] ; counts [va l]++; num++;

counts = counts /num;

In case of a larger size input or binary content, we can read several, e.g. 4−8 bytes,

at time from each block and record the corresponding (e.g. integer or long) value.

The counter for this value is then incremented on each encounter during the block

pass. Upon normalization, assigned to each block will be a probability distribu-

tion for the different values in the set range within the block. These approximate

probabality distributions (each corresponding to one small block) can be clustered

and used to re-arrange the smaller blocks of the input into the megablocks shown

in Figure 3. These larger blocks do not need to be of the same size but will be

composed of smaller blocks of similar symbol frequency content. BWT and the rest

of the compression steps, can then be performed separately on these megablocks.

To accomplish clustering, we propose two methods. The first method uses a dis-

similarity matrix between probability distributions in pairs of small blocks. This

N ×N matrix records dissimilarity between different symbol (or byte) probability

distributions in pairs of small blocks and is constructed by utilizing a similarity

metric such as the Kullback-Leibler Divergence (KLD, as in eq. 1) or the Jeffrey

divergence 12.

KLD(p(y), p(x)) =

n∑
i=1

p(yi) log

[
p(yi)

p(xi)

]
(1)

Once the pairwise dissimilarity matrix is stored, several clustering schemes to group

file chunks can be employed. To form the matrix we compute the pairwise KLD

distance over the counts array for each small block. That is, once the counts for the

byte values on the range [0, 255] are obtained over each block, we can evaluate the

pairwise KLD distance between the arrays for the individual blocks:

f o r (i , j in 1 : nb locks) :
d i s s mat [i , j] = k l d d i s t (counts mat [i ,] , counts mat [j ,]) ;

The clustering of the blocks can then be obtained directly with the dissimilarity

matrix information. Each cluster of blocks would then make up a single larger

megablock which would contain similar content. The megablock construction ap-

proach is summarized in the following listing.

• Subdivide the file into N blocks with a unique index, so that each part is

on the order of 1 MB or less in size.

• Construct histogram representation for each block by counting the number

of occurrences of each value (of one or more bytes) in a given range (e.g.

[0, 255]).

• Normalize histograms as probability distribution approximations on the

chosen symbol range to make them comparable.

• Construct the N ×N dissimilarity matrix by comparing individual pairs of

probability distributions. This can be done by utilizing the KLD metric or

November 22, 2021 9:48 WSPC/INSTRUCTION FILE ws-ijmssc

6 Sergey Voronin, Eugene Borovikov, Raqibul Hasan

histogram comparison techniques 3,6.

• Once a dissimilarity matrix is constructed, clustering can be accomplished

with a number of different schemes. Several approaches can be used to

estimate the optimal number of clusters, e.g. based on the silhouette score.

Construct M < N clusters, with most similar blocks being put together

into one cluster.

• Take megablocks as the M resulting clusters.

• Take re-arrangement vector to represent the permutation matrix P , to be

stored for the decompression operation.

3.1. Alternate clustering

As an alternative to the dissimilarity matrix based approach, we propose the adap-

tive scheme shown below, which automatically allocates additional clusters as the

formed block probability distributions are scanned. The standard K-means clus-

tering method may require a super-polynomial number of steps in its worst case,

with overall O(n2) complexity. The proposed adaptive clustering involves at most

n(n − 1)/2 distribution comparisons, has random seeding, and can be scaled for

large streams using approximate descriptor matching methods.

IN : ByteStream # proces sed in chunks
OUT: C lu s t e r s # (block , histogram) buckets

de f i n i t (ByteStream , BlockS ize =1024):
whi l e ByteStream . i s V a l i d :

add (ByteStream . read (BlockS ize))

de f add (block) :
h i s t = histogram (block)
c l u s t e r = nea r e s t (h i s t)
i f c l u s t e r : i n s e r t (c l u s t e r , block , h i s t)
e l s e : new(block , h i s t)

de f histogram (block , binCount =256):
h i s t = array (binCount)
f o r b in block : h i s t [b]+=1
return h i s t

de f nea r e s t (histogram , MaxDistance =0.00733) :
d i s t = i n f i n i t y
c l s t = n i l
f o r c l u s t e r in Cluse r s :

d = d i s t ance (c l u s t e r . mean , histogram)
i f d < d i s t : d i s t = d ; c l s t = c l u s t e r

i f d i s t > MaxDistance : r e turn n i l
r e turn c l s t

de f i n s e r t (c l u s t e r , block , h i s t) :
c l u s t e r . b locks . add (block , h i s t)
c l u s t e r . mean . update (h i s t) # update c l u s t e r mean histogram

def new(block , h i s t) :

November 22, 2021 9:48 WSPC/INSTRUCTION FILE ws-ijmssc

Clustering and presorting for parallel burrows wheeler based compression 7

c l s t = c l u s t e r (block , h i s t)
C lu s t e r s . add (c l s t)
c l s t . mean . update (h i s t)

3.2. File splitting for common cases

Some common cases, such as inputs with mixed text and numerical content, can uti-

lize custom splitting routines, prior to regular clustering. An example is a large CSV

file with a mix of text and numerical entries. For such inputs, a simple reversible

scanning and re-arrangement procedure can be performed, in order to subdivide

the file into two parts (one with mostly text content and one with mostly numerical

content). This is beneficial, as algorithms such as prediction by partial matching

(PPM) 11 are specifically designed for text inputs and can then be applied to the

text portion. In order to accomplish the splitting efficiently and reversibly, an algo-

rithm presented in Figure 5 (top) has been implemented. If necessary, the resulting

output files can then be separately subdivided in chunks and combined into separate

megablocks with the described clustering procedure.

Fig. 5. File splitting method for mixed numerical and CSV content.

4. Counting sort for accelerated suffix sorting

We now outline an approach for string sorting based on the O(n) counting sort

and bucketing, which complements the megablock based construction. In order to

form the suffix array, from which the BWT of the input can be deduced, it is

necessary to sort the string suffixes 10. An example is given in Figure 6, where

we see that presorting strings by the first character bring us close to the correctly

sorted result. The default approach is to sort the suffixes with quicksort using a

suitable comparison function such as strcmp() in C. This procedure is predictibly

slow for large inputs, as it relies on the O(n log n) quick sort with additional O(n)

complexity for string comparisons, which would approach O(n2 log n) total time

complexity. Faster algorithms are based on the idea that the suffixes to be sorted

November 22, 2021 9:48 WSPC/INSTRUCTION FILE ws-ijmssc

8 Sergey Voronin, Eugene Borovikov, Raqibul Hasan

Fig. 6. Suffix array sorting for input string ‘bananasale’ and result of one level of counting sort
and associated bucketing.

are all suffixes of a single string, sorting first according to 2i characters, and then

using the result to sort to 2i+1 characters in 0(n log n) time, taking advantage of

O(1) comparison time for two values. The resulting complexity is O
(
n(log(n))2

)
and can be improved to O(n log n) using the radix sort 13.

We discuss the use of an O(n) complexity counting method based pre-sort,

followed by bucketing, which can be used to accelerate suffix array string sorting

within each megablock similar to the radix sort method. In this approach, we utilize

a counting sort procedure which sorts a non-negative integer array and returns

the resulting permutation re-arrangement vector, which is necessary for the array

formation. The approach is applied over one character of the stings at a time, after

which bucketing is performed to separate strings into baskets. The approach can

be repeated again within each bucket and quick sort on each (small) bucket is

eventually employed to sort the strings. In Figure 5, we can see the suffixes of the

string ‘bananasale’, as well as the sorted result. One iteration of the O(n) sort on the

first character of each string followed by bucketing, would yield buckets of strings

starting with ’a’, ’b’, ’e’, ’l’, ’n’, and ’s’. In the next iteration, these buckets can

themselves be sorted with respect to their first character (the second character of the

original set of strings). This is still not enough to properly position ‘anansale’ and

‘anasale’, which require 4 levels of sorting (up to the fourth character). However,

it is clear from the example that one or more levels of sorting and subsequent

bucketing with respect to one character can reduce the number of full comparisons

needed in the subsequent O(n log n) sort over application on the original full string

set. With one level of the scheme, instead of n O(n log n) sorts for large n, we

would have an O(n) (counting) sort, followed by linear cost bucketing, and several

O(m logm) sorts of the buckets with m � n. At any stage, if the resulting buckets

are of many different sizes, the larger buckets can be split up by sorting them by

their first character.

To sort the suffix array and obtain the BWT, one must not only sort the strings,

but record the re-ordered permutation of the string sequence in relation to the un-

sorted order. In order to accomplish this, a simple data structure was used together

with the counting sort, as shown in Figure 7. This structure is necessary as duplicate

November 22, 2021 9:48 WSPC/INSTRUCTION FILE ws-ijmssc

Clustering and presorting for parallel burrows wheeler based compression 9

integers in the array may occur. Thus, an index of integers is used for every unique

value. The algorithm appears below, where the array inds is overwritten with the

Fig. 7. Values struct and example sort.

positions of the sorted elements in the original array. Here the max variable speci-

fies the max value in the array and the maxrpts variable specifies the assumed max

number of repeats of each value, which can vary per each unique value. We can

assume all integers are non-negative.

Begin
max = get maximum element from array .
ind = 0 ;

// i n i t i a l i z e s t r u c t array
f o r i :=0 to max do

v a l i n d s [i] . inds = (i n t ∗) c a l l o c (maxrpts , s i z e o f (i n t)) ;
v a l i n d s [i] . num inds = 0 ;

done

// scan input contents
f o r i :=0 to l en do

v a l i n d s [a [i]] . inds [v a l i n d s [a [i]] . num inds] = i ;
v a l i n d s [a [i]] . num inds++;
counts [a [i]]++;

done

// f i n d cumulat ive f requency
to t = 0 ;
f o r i := 1 to max do

cnt = counts [i] ;
counts [i] = to t ;
to t += cnt ;

done

// record so r t ed array in b
f o r i :=0 to l en do

b [counts [a [i]]] = a [i] ;
done

// record re−index ing
f o r i := 1 to s i z e do

f o r j := 1 to v a l i n d s [a [i]] . num inds do
inds [ind++] = v a l i n d s [a [i]] . inds [j] ;

done
done

End

The bucketing is accomplished by comparing strings within the suffix array by their

November 22, 2021 9:48 WSPC/INSTRUCTION FILE ws-ijmssc

10 Sergey Voronin, Eugene Borovikov, Raqibul Hasan

designated character (e.g. first character for first level buckets) and then subsequent

characters within buckets. This can be done efficiently, via a linear pass through

the output of the sorted set with 0(1) comparisons between characters (integers).

The procedure can be repeated inside first level buckets to form sub-buckets, with

sorting done with respect to the second character of the suffix strings. Once the

resulting string buckets are formed, they can be sorted with full string comparisons:

f o r (i =0; i<nbucket ; i ++){
qso r t (s t r b u c k e t s [i] . s t r a r r , s t r b u c k e t s [i] . num str ings ,

s i z e o f (∗ (s t r b u c k e t s [i] . s t r a r r)) , saCompare) ;
}

5. Numerical experiments

In this section, we show the results of some numerical experiments. The orginal

parallel BWT based compression approach we consider is to subdivide the input

in even chunks and then apply BWT with O(n log n) sort over parts of the even

blocks. In the approach we put forward, we first subdivide the input in small chunks,

compute the pairwise dissimilarity matrix with respect to the frequency contents

of the chunks, use this to cluster chunks into larger megablocks, then apply BWT

on small chunks of megablocks with at least one level integer pre-sorting before

bucketing and subsequent O(m logm) sorting with m < n. This is followed by

MTF, RLE, and entropy encoding (arithmetic coding). For common cases, such as

mixed text and numerical content, we first split the input into two bundles (per

the approach in Figure 5) and then perform megablock construction. An extra

step which in some cases further improves the compression ratio is to utilize byte-

swapping either for a portion of the original input, for e.g. the binary content

megablocks or for the compression system output prior to the application of entropy

encoding, where the data is read in chunks of several bytes and the order of bytes

is swapped from greatest to least significant order. This can be accomplished for

each multi byte chunk, with a standard swap routine:

Begin
x = (unsigned char ∗) &va l ;
i = 0 ; j = s i z e o f (x) − 1 ;
whi l e (i<j) do

temp = x [i] ;
x [i] = x [j] ;
x [j] = temp ;
i ++; j −−;

done
End

If utilized, this routine then needs to be appropriately applied to blocks of bytes

in the decoder sequence during the decompression step. In an experiment, a mixed

ascii text and numerical content file of size 14 MB compressed with the BWT,

MTF, RLE, AC sequence to 3 MB and with integrated byte swap between RLE

November 22, 2021 9:48 WSPC/INSTRUCTION FILE ws-ijmssc

Clustering and presorting for parallel burrows wheeler based compression 11

and AC steps to just over 2 MB. Here the file was read in 4 bytes at a time and

the swap performed over each four byte set:

f s e e k (fp , 0 , SEEK END) ;
long nbytes = f t e l l (fp) ; i n t i = 0 ;
f o r (i < (nbytes /4)) do

f r ead (buf in , 4∗one , one , fp) ; va l = b u f f e r [i] ;
ByteSwap (va l) ;
memcpy(buf out+i ∗4 , &val , 4) ; i ++;

end
f w r i t e (bu f f e r2 , one , nbytes , fp2) ;

Compression ratio improvements with the byte swap scheme were observed for

different test files.

The next experiment demonstrates the effectiveness of the simple splitting strat-

egy for mixed content data and the linear runtime of the counting sort procedure.

We have utilized a 50 MB file with a mix of ascii text and numerical content and

applied the splitting strategy from Figure 5. Figure 8 shows the content distribution

of the original and two generated data files (the mostly text and mostly numerical

portion). In the same Figure, we plot the runtimes of the counting sort, using arrays

generated with random integers, as below.

ar r = (i n t ∗) c a l l o c (n , s i z e o f (i n t)) ; inds = (i n t ∗) c a l l o c (n , s i z e o f (i n t)) ;
f o r (i = 0 ; i < n ; i++) {

num = (rand () % (high − low + 1)) + low ;
a r r [i] = num; inds [i] = i ;

}
count ing so r t w i th pe rmind (arr , inds , n , high +1);

We also illustrate sorting runtimes on a 13 MB file formed by taking a subset of

the rows of the file used for the splitting experiment. In particular, we see that

quick sort on the full set took about 58 sec, counting sort with index permutation

on first char about 0.7 sec and quicksort on 3 subdivided buckets (which can be

efficiently formed based on the index permutation information) a total of 48 sec,

suggesting that even crude pre-sorting and bucketing can lead to speed advantages

for the BWT step.

Next, to motivate the benefit of megablock clustering in parallel compression,

we used an English ebook (The Adventures of Sherlock Holmes), a Cyrillic ebook

(War and Peace), and a numerical csv file. These files were then appended together

and shuffled, with the following command sequence:

cat ASH. txt WaP. txt num1 . csv >> big2 . txt
shuf big2 . txt −o b ig2s . txt

The size of the two resulting files was 38 MB. However, the shuffled content (with

greater entropy) compresses worse than the original unshuffled file. The unshuffled

file compressed with a combination of BWT, RLE, MTF, and AC implementations

with an output size of 3.3 MB, while the resulting shuffled file compressed to 4.0

MB. The compression took about 3.7s on a 2.9 Ghz desktop CPU (a large file would

necessitate parallel compression for suitable runtime). The file was then split up into

26 equal blocks and probability distributions were generated for the range [0− 255]

November 22, 2021 9:48 WSPC/INSTRUCTION FILE ws-ijmssc

12 Sergey Voronin, Eugene Borovikov, Raqibul Hasan

in each portion, as described. The small blocks were then parallel compressed indi-

vidually. The small blocks compressed significantly faster, but the total output size

was 4.4 MB. We implemented the proposed clustering strategy using a dissimilarity

matrix construction. The resulting dendrogam is shown in Figure 9, which shows

grouping of the small blocks into larger megablocks. Compressing the 5 individual

megablocks yielded an output size of 4.1 MB, close to that of the serial compression

result. Then we proceeded to split the input into text and numerical portions using

our approach. This resulted in two files of 23 and 15 MB each. In turn, cluster

compressing these portions in 4 blocks each, yielded a total output size of 3.9 MB,

slightly below that of the (serial) single block shuffled content compression, with

noticeable improvement on the basic parallel compression strategy.

 0

 0.5

 1

 1.5

 2

 1 1.5 2 2.5 3 3.5 4 4.5 5

ti
m

e
 (

s)

array size (x 107)

Counting sort with index permutation runtime

time

 0

 10

 20

 30

 40

 50

qfull counting qpart

tim
e

(s
)

quick sort full, counting 1char sort, quick sort on 3 parts

Sorting run times

Time

Fig. 8. Top: sample performance of text/numerical splitting. Bottom: linear runtime of count-
ing sort with index permutation vs array size and sample sorting times (full set with quicksort,
counting sort on first character, and quicksort on 3 buckets).

6. Conclusion

We discuss improvements to parallel BWT-based compression implementations,

especially for application to large non-homogeneous data inputs. The presented

strategy is based on data permutation, accomplished by clustering of blocks of the

data input into larger megablocks before the BWT and subsequent operations are

applied. This is especially effective for mixed alphabet inputs which do not com-

press optimally with even subdivision. We also outline an optional byte swapping

procedure in between the move to front and entropy encoding steps and the use of

November 22, 2021 9:48 WSPC/INSTRUCTION FILE ws-ijmssc

Clustering and presorting for parallel burrows wheeler based compression 13

 0

 1

 2

 3

 4

 5

unshuffledc shuffledc smallblockc mgablkc splitmgablkc

fi
le

 s
iz

e
 (

M
B

)

unshuffled comp, shuffled comp, block comp, cluster comp, split+cluster comp

Comparison of Sizes

Size

Fig. 9. Sample performance of text/numerical splitting and compression improvements using
combined approach with clustering.

an O(n) complexity counting sort with permutation reindexing, followed by buck-

eting and sorting of multiple smaller m < n size sets, in place of many O(n log n)

sorts. Compression ratio improvements due to content clustering are demonstrated

in examples.

Acknowledgement: We are sincerely thankful for DOE funding (contract DE-

SC0021467).

References

1. Balkenhol, Bernhard, and Stefan Kurtz. “Universal data compression based on the
Burrows-Wheeler transformation: Theory and practice.” IEEE Transactions on Com-
puters 49, no. 10 (2000) : 1043-1053.

2. Burrows, Michael and David Wheeler. “A block-sorting lossless data compression algo-
rithm.” Technical report 124, Digital Equipment Corporation Systems Research Cen-
ter, 1994.

3. Ester, Martin, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. “A density-based
algorithm for discovering clusters in large spatial databases with noise.” In Kdd, vol.
96, no. 3 4, pp. 226-231. 1996.

4. Fenwick, Peter. “Burrows Wheeler Compression.” In Lossless Compression Handbook,
pp. 169-194. San Diego, CA: Academic Press, 2003.

5. Gilchrist, Jeff. “Parallel data compression with bzip2.” In Proceedings of the 16th
IASTED international conference on parallel and distributed computing and systems,
vol. 16, pp. 5 59-564. 2004.

6. Ling, Haibin, and Kazunori Okada. “Diffusion distance for histogram comparison.” In
Computer vision and pattern recognition, 2006 IEEE computer society conference on,
vol. 1, pp. 246 -253. IEEE, 2006.

7. Mahoney, Matt. “Large text compression benchmark.” URL: http://www. mattma-
honey. net/text/text. html (2011).

8. Mahoney, Matt. “10 GB compression benchmark.’ URL:
http://mattmahoney.net/dc/10gb.html. (2016).

November 22, 2021 9:48 WSPC/INSTRUCTION FILE ws-ijmssc

14 Sergey Voronin, Eugene Borovikov, Raqibul Hasan

9. Sayood, Khalid. “Lossless compression handbook.” Elsevier, 2002.
10. Sayood, Khalid. “Introduction to data compression.” Morgan Kaufmann, 2017.
11. Shkarin, Dmitry. “PPM: One step to practicality.” In Proceedings DCC 2002. Data

Compression Conference, pp. 202-211. IEEE, 2002.
12. Stokely, Murray, and Tim Hesterberg. “Package ‘HistogramTools’.” (2013).
13. Vladu, Adrian, and Cosmin Negruseri. “Suffix arrays – a programming contest ap-

proach.”, GInfo 15, no. 7, 2005.

