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Abstract
In this document, we present new techniques for near-lossless and lossy com-
pression of SAR imagery saved in PNG and binary formats of magnitude
and phase data based on the application of transforms, dimensionality re-
duction methods, and lossless compression. In particular, we discuss the
use of blockwise integer to integer transforms, subsequent application of a
dimensionality reduction method, and Burrows-Wheeler based lossless com-
pression for the PNG data and the use of high correlation based modeling of
sorted transform coefficients for the raw floating point magnitude and phase
data. The gains exhibited are substantial over the application of different
lossless methods directly on the data and competitive with existing lossy
approaches. The methods presented are effective for large scale processing
of similar data formats as they are heavily based on techniques which scale
well on parallel architectures.
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1 Introduction
Synthetic-aperture radar (SAR) is an active form of radar used to create two-
dimensional or three-dimensional reconstructions of objects, such as land-
scapes, by bouncing a microwave wavelength signal off the Earth’s surface
and analyzing the backscattered results, as illustrated in Figure 1. There
are specific advantages to this approach as it allows imagery to be obtained
regardless of illumination and weather conditions. However, there are also
common artifacts of this imaging process such as speckle effects, mainly due
to altitude variations over the scanned area, which often manifest in an in-
crease of the approximate linear dependence of the data, as characterized
by the singular value decay rate [1]. SAR data is often presented in com-
plex form, with real and imaginary parts or equivalently in polar format
with magnitude and phase information [2]. Effective compression of com-
plex SAR data is often necessary for storage and transmission applications,
yet often challenging due to the need for high reconstruction accuracy, in
applications such as interferometry. The techniques applied here can vary
based on the available format of the SAR data, either encoded as PNG, or
in raw format with magnitude and phase components. In both cases, it is
interesting to exploit redundancy in the data via lossy compression, prior to
the application of lossless compression techniques. We propose two different
methods to do this, one tailored for sets of integer data and one for floating
point data.

Figure 1: SAR image acquisition from flying platform.

2 Methods
In what follows, we provide some details on different SAR data formats,
which are also common to various remote sensing type data, discuss blocking
and transform application, which is an essential parallelizable step for the
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redundancy reduction direction, and then present the proposed algorithms
for integer and floating point data which combine redundancy reduction and
compression techniques.

2.1 SAR data formats

We consider complex SAR data available for download from the Sandia
National Laboratory [3]. There are several data sets, some available as 8
bit gray scale PNGs and binary general feature format (GFF) files, which
can be parsed for magnitude and phase (M,P ) matrix components, with
the image reconstructed in Matlab/Octave as im = M. ∗ exp(j ∗ P ); im =
255 ∗ abs(im)/max(max(abs(im))). The singular decay for both matrices
is typically non-linear, as illustrated for a sample image in Figure 2. De-
pending on the situation, the matrix components can be integer (noise-free)
or floating pointing quantities. The PNG sizes range from about 2.8 to 3.0
MB, while the GFF files are 16-32 MB each. It is easily seen that in many
instances, such as in transmission of multiple images between remote loca-
tions or during recording for storage, effective lossy compression techniques
for the data or its subset could be desired. In the case of integer data, it
is important to try not to convert it to floating point representation, via
the use of general purpose transforms from signal processing applications,
as floating point data generally take more space to store and are harder to
compress. On the other hand, if the original data is in floating point form
then a wavelet or Hadamard type transform is suitable for use in order to
accelerate the singular value decay and/or possibly group similar data values
closer together, as desirable to achieve better compression.

Figure 2: Illustrations of a SAR image and the corresponding singular value
decay of its magnitude and phase components from the open Sandia data
set.
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2.2 Data blocking and transform application

In the presented algorithms, we propose to subdivide the matrix data into
sub-blocks and separately apply a linear transform to these blocks, then fur-
ther process the resulting output. This step is useful for preparing the data
for redundancy reduction. Previously, Gabor type transforms have been
demonstrated to be effective for improving compression [4]. However, in the
case of PNG images or integer magnitude / phase data, such blocks would
contain integer data and an integer to integer (int-int) transform would be
the most appropriate to apply, to avoid transforming integer data to floating
point. One option for such an invertible transform matrix can be derived
from a rounded and scaled Discrete Cosine Transform (DCT) matrix. For
the case of floating point data, a multi-level wavelet transform can be used.
The idea is that the transformed nearby blocks (or even blocks across differ-
ent images in a set) would exhibit some similarity, such that either the com-
bined matrix of transformed blocks would exhibit greater singular value de-
cay than that of the original block data or that the sorted block values would
have high pairwise correlation, which would allow some block values to be
predicted in terms of another and a retained integer permutation index set.
The linear transform matrix M must be invertible (such that det(M) is suf-
ficiently away from zero) and well-conditioned. For that, suitable scaling is
necessary to be applied before rounding to avoid setting certain small entries
to zero. As one candidate in Algorithm 1, in Octave syntax, we can use the
int-int transform matrix M = round(dctmtx(N)/min(min(dctmtx(N)))),
based on the DCT formulation D(i, j) =

√
2/N cos [i(2j + 1)π/2N ] for

i > 0. Other transform examples can be found in [5].

2.3 Approximate linear dependence

For both the PNGs and the GFF files, which contain the magnitude and
phase data, approximate linear dependence and redundancy amongst data
columns can be observed both in the original data and under suitable trans-
formations. In our proposed methods, we attempt to take advantage of this
via a reduced rank linear transformation, the Interpolative Decomposition
(ID), which retains only a portion of the permuted data columns and a small
floating point matrix. The ID is factorization based on the QR decompo-
sition, which returns a factor containing a selection of columns (or rows)
of the original matrix. We can start with the pivoted QR decomposition,
AP = QS, which can be written as A(:, Jc) = QS for a column index Jc,
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with details given in [6]. This results in the approximate factorization:

A ≈ CV T , where V T =
[
Ik Tl

]
P T .

with C = A(:, Jc(1 : k)), a subset of the columns of A based on the piv-
oting strategy in the QR factorization and the remaining V factor a well-
conditioned matrix. Notice that when we apply the ID to the matrix trans-
pose we get AT ≈ A(Jr(1 : k), :)Ṽ T , where A(Jr(1 : k), :) represents a subset
of k rows of the matrix, corresponding to the employed pivoting strategy.
The use of the ID allows us to retain only a subset of the available columns
or rows of a matrix when it’s singular values decay nonlinearly, thus en-
abling us to substantially reduce the amount of data in the target matrix,
which when used together with image compression and lossless compression
techniques, acts to improve performance.

2.4 Lossless compression

The lossless approach consists of either the Burrows-Wheeler based or zlib
compression [7, 8], chosen adaptively, depending on which gives better re-
sults. In the case of the former, a Burrows-Wheeler local similarity transform
(BWT) is used to reversibly transform the input into a better compressible
form based on string sorting, followed by a variant of the move to front
(MTF) transform and run length encoding (RLE) for rearranging frequently
appearing symbols to the front and compressing sequences of identical data
and finally entropy coding (EC), such as Huffman or arithmetic coding, for
more efficiently representing the input data. The goal of BWT is to re-
versibly transform the input into a better compressible form based on string
sorting. The lossless approach is applied to the transformed data after the
lossy steps are employed. The zlib approach consists of the LZ77 algorithm
which replaced repeated symbol occurrences with a reference to the symbol
in dictionary and Huffman coding, or optionally, Arithmetic coding, which
represents the data in terms of a floating point interval. Data can be split
into byte sets and separately compressed. For floating point data, specialized
methods can be employed [9].

2.5 Proposed algorithms

We propose approaches to compress SAR type and similar data sets in differ-
ent formats more efficiently than can be done with the use of general purpose
compression tools such as bzip2 or zlib, or regular image compression (e.g.
JPEG) by taking into account the approximate linear dependence which is
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further revealed via the use of suitable transform methods. The methods
discussed are general enough to also apply to data from other remote sensing
and imaging applications.

• Method 1 for image data saved in PNG and similar formats, from
which we can extract the integer pixel data, is based on blocking, the
application of an int-int mapping transform, the interpolative decom-
position and lossless encoding or optionally, JPEG type compression.
The matrix of transformed blocks displays faster singular value decay
compared to the matrix of original pixel blocks, by which principle a
low rank ID decomposition can be utilized to represent the data ef-
ficiently with a fraction of retained columns. Subsequently, lossless
compression is utilized to store the resulting ID components (a subset
of the transformed block data and a small floating point matrix) more
efficiently. Reconstruction is accomplished by uncompressing the ID
components, multiplying out the ID factors to form the transformed
block matrix approximation, and then applying the inverse transform
to the blocks.

• Method 2 for image data saved in binary format with magnitude and
phase components (assumed to be floating point data due to noise) is
based on the use of blocking and a high correlation low order poly-
nomial modeling scheme, whereby transformed (under a wavelet or
Hadamard transform) absolute value coefficients for each block, with
original signs recorded by a bit array are sorted, log transformed, and
used with a pairwise model between data pairs in order to reduce the
number of retained floating point data vectors, replacing them with a
few model coefficients, and an integer based permutation vector for the
sort order. A clustering scheme can be utilized based on the correla-
tion information between data vectors to identify similar data clusters
and to approximate elements of each cluster.

2.6 SAR PNG data compression with block transforms

In order to transform the SAR PNG data set, we load the pixel values for
one or more images from the lossless PNG representation. The described
method shown in Algorithm 1 is likely to work better if the block wise
compression is applied to several images at once from the same set, as some
similarity between different images in the same set is likely. In both cases,
a matrix representation is formed from the pixel values. For example, from
the realccd1 set [3], the PNGs are 8 bit with dimensions 3000 × 1754 and
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we can use a block size of 256 × 256 to subdivide the pixel data into 84
blocks. Each of the values in these blocks will generally be on the range
[0, 255]. Yet, the direct compression of such blocks may not produce the
most efficient representation in terms of size/quality tradeoff. Instead, we
apply an integer to integer transform to each block, using an invertible
(nonzero determinant) linear matrix of integer elements which maps integers
to integers, based on the scaled rounded DCT. The resulting transformed
block set would have some similarity, in the sense that it’s singular value
decay will be more rapid than the decay of original blocks from the image
pixel values. After the application of the transform, the entries would occupy
a greater range and include both negative and positive numbers. We can
subtract the smallest number (largest magnitude negative value) from each
block in order to make all the block members non-negative. Optionally,
prior to this, we can compute the median of every p blocks, and subtract
the median block from every block in the corresponding set, to attempt to
further increase similarity between block data. Following these steps, the
ID (see Figure 3) is applied to the matrix of transformed blocks with a
reduced rank, which significantly reduces the amount of retained data. The
remaining data, including the ID factors I, MI = M(:, I(1 : k), V t and
any scaling factors or median blocks used for scaling and subtraction are
losslessly compressed. Lossy reconstruction is readily achieved by computing
the approximation M ≈ (MI)(V t) to the matrix of transformed blocks
and then applying the appropriate scaling. The ID and int-int transform
structure are shown in Figure 3. When the approach is utilized on multiple
images at once, it is likely to lead to overall better compression by exploiting
similarity between blocks of different images under an int-int transform. If
this is done, the images are appended together column wise to form a larger
overall matrix and a larger block size may be suitable (e.g. 512×512, 1024×
1024). One possibility is to consider image compression techniques applied
to the data in the MI matrix, which is a subset of the transformed pixel
data, prior to the application of lossless methods.

In Figure 4, below, we may observe how the decay of singular values
is accelerated with the use of the invertible int-int transform. As can be
observed, the decay (illustrated in log scale for the example block sequence
given in the numerical experiments example) is sufficient enough to warrant
the use of the dimensionality reduction techniques prior to the application
of the traditional data compression methods.
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Algorithm 1: SAR block PNG compress
Input: A set C = {I1, I2, . . . , Ir} of SAR images in PNG (or

similar) format, block size l × l and adaptive tolerance ε or
rank k.

Output: A compressed representation consisting of losslessly
compressed ID components and scaling factors.

1 Break the image pixel set in l× l blocks for a total of Ns blocks {bi}
representing the set.

2 Initialize transform matrix
Tl = round (dctmtx[l]/min(min(dctmtx[l]))).

3 Apply transform and subtract smallest number from each block.
4 for i← 1 to Ns do
5 bti = Tlbi
6 mvi = min(min(bti))
7 bti = bti −mvi
8 M = [M ; bti]
9 Decompose matrix of transformed blocks M ≈M(:, I(1 : k))V t via

pivoted QR factorization to tolerance level ε.
10 Lossless compress remaining ID and scaling factors.

Figure 3: Illustration of int-int transform structure and the ID decomposi-
tion, which selects a subset of rows or columns of a matrix based on the QR
decomposition pivoting vector output.

2.7 Compression of magnitude / phase data with high cor-
relation modeling approach on transformed block data

Sometimes, SAR data is taken directly from the imaging instrument without
post-processing into an image format. In the case of complex data, magni-
tude and phase data recordings are available, such that the image can be
formulated via the computation MD. ∗ exp(jPD), with floating point MD

and PD matrix components, which are generally more challenging to com-
press well losslessly [9]. In the case of similar data, such that when many
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images of a common area are considered, the amount of floating point data
across the image set can be reduced by high correlation modeling techniques
with a model used to represent transformed and sorted absolute value coef-
ficients sets for a block of data in terms of one of the retained pillar blocks.
In this approach, we take separately the MD and PD data, divide the data
in blocks, apply a transform, and seek to reduce redundancy via the ID,
as in the previous approach. For the remaining block pairs retained in the
MI factor of the ID, we compute the correlation coefficient between sorted
transformed absolute value coefficients for each data block and construct
low order polynomial models between transformed sorted block coefficients
which have high correlation. The transform used can vary, but a wavelet
transform such as the CDF97 family, typically works well on floating point
data [8]. The idea behind the scheme in Algorithm 2 is that the decay of
sorted absolute value coefficients after the application of the linear transform
on block data is approximately exponential and becomes approximately lin-
ear under a log transform. This then allows to model portions of the decay-
ing by magnitude coefficients with respect to a retained pillar floating point
vector, if the permutation indices and signs data is retained for every data
block. The non-negative integer permutation data can generally be lossless
compressed efficiently and the remaining sign data can be compressed using
bit arrays. The reconstruction can be accomplished by reversing the sort
order using the permutation data and inserting the correct signs, followed
by the application of the inverse transform.

In the center of Figure 4, we can see the exponentially decaying shape
of the sorted absolute value transformed coefficients of the magnitude data.
It’s important to note that this general decay will be observed for any partic-
ular data sequence. Under a log transform, the decay will be approximately
linear, especially if the sorted coefficients are separated into several portions
and the portions are separately compared to those of different instances. The
linear correlation between such approximately linearly portions correspond-
ing to different instances will in many cases be high (> 0.95), as indicated
by the correlation plot on the right of the Figure. In the case of high cor-
relation, the coefficients from one portion may be used to predict those of
another portion with a linear or low order polynomial model. The matrix of
one minus the pairwise correlation values can be utilized as a dissimilarity
measure by a clustering algorithm in order to group similarly transform-
ing data blocks together. Within each cluster, one or more floating point
vectors can be designated as pillar(s) and used to predict the remaining
floating point vectors of absolute value sorted transformed coefficients with
a suitable polynomial model. Using retained re-indexing data from the sort
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Algorithm 2: SAR floating point block magnitude / phase
data compression

Input: Sets CM = {MD1 ,MD2 , . . . ,MDr} and
CP = {PD1 , PD2 , . . . , PDr} of magnitude and phase SAR
image data, block size l × l, and desired tolerance ε.

Output: A compressed representation consisting of losslessly
compressed ID components, retained pillar data, model
parameters and scaling factors.

1 Break data set in l × l blocks for a total of Ns blocks (bi).
2 Initialize matrix M to hold transformed blocks and invertible

transform matrix Wl.
3 for i← 1 to Ns do
4 bti = Wlbi
5 M = [M ; bti]
6 sbti = |max(bti)|
7 [magsi, sindsi] = sort(|bti/sbti|, ’descend’)
8 signsi = sign(bti(sindsi))
9 Factor MT ≈ (MI)(V t) to tolerance ε.

10 for i← 1 to nc(MI) do
11 for j ← 1 to nc(MI) do
12 corri,j = corr(log(magsi), log(magsj))

13 Form S clusters of blocks based on pairwise correlation information.
14 Form polynomial model for recovering log(magsi) values from one

of the first few members of each cluster.
15 Lossless compress retained floating point pillar data magsj for

select j, along with the model information and signs and
permutation indices for all j = 1, dots,Ns.
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and the transformed coefficient signs, the original floating point data for the
target instance can be approximately recovered from the retained pillar ref-
erence(s). For better performance, the exponentially decaying curve of the
sorted absolute value coefficients can be pre-divided into several portions
and separate models for each portion can be formed between the pillar(s)
and the other floating point vectors in a cluster. In the case of several pillars,
the pairwise model with the least error is used in each case, corresponding
to a particular pillar element for each member.

Figure 4: Left: singular value decay of original and int-int transformed
data blocks. Center/Right: Transformed and sorted absolute values of SAR
magnitude components under CDF 9/7 transformation and sample block
pair correlations.
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Figure 5: Original image set and reconstruction from com-
pressed data. Comparison of output sizes with different com-
pression schemes.

3 Numerical experiments and discussion
In this section, we summarize experimental results for the two proposed al-
gorithms for sets of one and multiple SAR images obtained from [3]. We first
consider a set of 8 images, each with dimensions 1754×3000 and size 5.3 MB
in uncompressed raw format (PPM). In lossless PNG format, the images are
2.7 − 2.9 MB each, with slight variation between images depending on the
contents. The combined image in PNG format is of approximate size 22.5
MB. With JPEG, we can significantly reduce the size with downsampling,
depending on the acceptable level of quality, which we can quantify as the
PSNR score between the output image and the original. Here, we describe
the performance of our first method with respect to this input. Separating
the merged image data in 256 × 256 blocks yields a matrix structure M
of size 168960 × 256. Performing an ID decomposition of rank 60 on this
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matrix, we have a subset of columns MI of size 168960 × 60, and a small
floating point matrix V t of size 60 × 256, which together approximate the
M matrix within 2%. After the application of the int-int transform to each
block and the subtraction of the largest magnitude negative value to make
the resulting matrix M2 non-negative, the singular value decay is acceler-
ated and a smaller rank 25 can be used to obtain MI2 of size 16890×25 and
with a correspondingly smaller floating point matrix V t2 achieve a slightly
smaller approximation error to M2, the matrix of int-int transformed blocks,
of within 1%. The storage requirements then come down to a 168960 × 25
non-negative integer matrix and a small 25 × 256 floating point matrix, a
significant reduction from the original M or M2 matrix size. The original
image can be recovered via the multiplication of the ID decomposition ele-
ments, followed by the addition of the stored previously subtracted negative
value for each block, the application of the inverse int-int transform to the
blocks, and rearrangement of the blocks into the original geometry, and then
interpreted as pixel values and exported to PNG with a header. This will
be a non-exact reconstruction due to the use of the lossy ID. The ID por-
tion, mainly represented by the MI1,2 matrix and the small floating point
multiplier V t1,2 and scaling factors can then be compressed with lossless
methods. If this is done, the file size and PSNR numbers can be comparable
to or best JPEG compression with subsampling. For the discussed example,
the output size of BWT/AC based compression of the ID components of the
factored block transformed matrix is shown in Figure 5. It’s worth noting,
that the JPEG algorithm can be applied to the MI matrix entries, as these
are a subset of the columns of the original block image data. The MI2 data
are a subset of int-int transformed pixel values, with applied translation to
make them non-negative. On these entries too, techniques from image pro-
cessing can be attempted. Thus, the fact that the output size is comparable
to subsampled JPEG even without additional image compression methods
is indicative of the fact that dimensionality reduction (made possible via
the int-int transform application to the blocked data) paired with lossless
compression, is a promising direction for this and similar data types.

Next we discuss the processing of the GFF files. Each file consists of a header
and magnitude and phase component data for a total of about 16 MB. The
image can be formed by extracting the magnitude (M) and phase (P ) data,
evaluating the complex form M exp(jP ), taking the absolute value and scal-
ing to the range [0, 255]. Direct compression yields small improvement on the
file size, bring it down to about 14 MB. Extraction and individual compres-
sion of magnitude and phase data gives additional gain to about 12 MB.
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Figure 6: GFF integer data file reconstructions (top): original, with respec-
tive phase and magnitude approximation, and both approximated. Output
file sizes (bottom left) with int-int-ID compression compared to bzip2 indi-
vidually compressed components. Illustration of pairwise high correlation
modeling approach for reconstructing transformed sorted coefficients from
pillar data (bottom center, right).

However, both the magnitude and phase data exhibit non-linear singular
value decay, and as with the previous data, the decay can be accelerated by
the application of the block based int-int transform, prior to lossless com-
pression. Doing so, yields from the original magnitude and phase integer
data matrices of size 2512×1638, matrices MI2 and V t from the ID decom-
position of the scaled int-int transformed data, of size 17920×100 with rank
100 (of 256), with respective reconstruction errors of 4.7 and 3.8 percent.
The ID derived data compress significantly better than the original matrices,
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Figure 7: GFF file components with additive noise (floating point). Illus-
tration of pairwise high correlation modeling approach for reconstructing
transformed sorted coefficients from pillar data. Actual vs recovered signed
transform coefficient data and actual data. Bottom: clustering silhouette
measure and sample dendrogram.

for a total of around 7 MB, compared to 12 MB for the compressed magni-
tude and phase data. The rank can be varied to achieve the desired PSNR
value. For the stated approach, the reconstruction with the approximation
from the ID of the block int-int transformed individual (only magnitude or
phase) and both components are given at the top of Figure 6.

The last case illustrated in Figure 7, is where the magnitude and phase
data have additive noise, so that they are floating point matrices and com-
press significantly worse with lossless techniques (for example, with 70 blocks
for the magnitude matrix data, they are of size approx. 32 MB and zlib
can decrease the size to at most ≈ 30 MB). The floating point entries can
be due to aberrations in the collection process or e.g. introduced during
data transmission from remote locations. As before, we propose to subdi-
vide the magnitude and phase data into blocks, which are now with float-
ing point values. After the application of the CDF 9/7 wavelet transform,
the absolute value sorted coefficients from some pairs of different blocks
would have high correlation (as they would decay exponentially in a sim-
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ilar matter, with the curve split in several parts for separate modeling)
and Algorithm 2 can be applied for compression, whereby one minus the
pairwise correlation matrix entries is utilized as the dissimilarity matrix for
clustering. This way, high similarity blocks of transformed floating point
data are clustered together and can be all predicted based on a single re-
tained member of each cluster and the associated polynomial model fitting
parameters (several models for each part of the curve). If necessary, for
larger clusters, more than one member can be retained and the rest can
be approximated with respect to either member depending on reconstruc-
tion error. As illustrated in Figure 7, only a fraction of absolute value
vectors in each block need to be stored as pillars to approximately recover
all the transformed floating point data. That is, in Octave notation, we
take e.g.: sw ref = log(wt i svals); sw new = log(wt j svals); sw ref2 =
sw ref(10001 : 20000); p = polyfit(sw ref2, sw new2, 3); yfit2 = p(1) ∗
(sw ref2)3 + p(2) ∗ (sw ref2).2 + p(3) ∗ (sw ref2) + p(4); and approximate
the sorted transform coefficients from the pillar reference as
[save b j vals1; exp(yfit1a); ...; exp(yfit1d); save b j vals2], where the be-
ginning and ending values (of the exponential decay curve) are retained for
member j and the rest approximated via the polynomial model with respect
to the pillar. For example, with 35 blocks, we can take 10 clusters (based
on the analysis of the silhouette measure), and only store one or two float-
ing vectors per cluster. The wavelet coefficients of the non-pillar (reference)
blocks are recovered this way to small error (below 0.1%), but on application
of the inverse transform the error increases, as illustrated on the top right.
The method is most appropriate for compressing sets of magnitude / phase
floating point blocks from a collection of several related images.

4 Conclusions
We have presented new methods applicable to the compression of integer
based and floating point imaging data. For both cases, the described new
direction is the introduction of additional steps prior to the application of
traditional lossless or lossy techniques. One of the key steps is dimension-
ality reduction, which can be utilized more effectively after the application
of a suitable transform. We describe a simple integer to integer rounded
DCT based transform construction for this purpose. For floating point data
blocks with inherent similarity, we discuss a correlation based approach for
reducing the number of floating point elements, where the transformed and
sorted absolute valued coefficients are clustered and modeled with respect
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to retained pillar data, allowing for a reduction in floating point vectors in
each identified cluster. Both of the approaches are lossy but can be tuned
to different reconstruction tolerance levels.
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