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Sergey Voronin, Ph.D. | sergey.voronin @ outlook.com | https://svoronin.neocities.org | github.com/sergeyvoronin

Math, engineering, and computer science education from U.S.

and Internationally. Applied math, scientific and high performance
computing, large scale data analysis background.

B.S. in Applied Mathematics (minor Comp. Science) from

time (s)

Engineering School. m.,'f

M.A. in Applied and Computational Mathematics.

(Numerical differential equations, fluid mechanics and research
in benchmarking general circulation climate models.)

Ph.D. in Applied and Computational Mathematics, Princeton
Univ., 2012.

(Optimization problems with sparsity constraints, compressive
sensing methods, applications to Geophysics and imaging, HPC
implementations).

Work in academia post Ph.D. defense (2012 - 2017): signal
processing, optimization, randomized algorithms for matrix
manipulations / factorizations, imaging.

Work in industry (2017 - present): lossless compression, audio
and video analysis / classification, anomaly detection /
localization in electrical systems, multivariate time series, network
analysis, etc. Pl on multiple SBIR/STTR grants.
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Development of statistical and Al-based methods for anomaly detection and
localization in electrical systems and computer network applications.

RUNTIMES of RSVDPACK vs PROPACK
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Different HPC and accelerated
implementations with OpenMP, MPI, GPU.

Horizontal Grid
(Latitude-Longitude)

Vertical Grid
(Height or Pressure)

Algorithms and software for Geotomographical

inversion from seismic measurements.

Parallelized implementations with novel approaches for

dimensionality reduction and lossless data compression.
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Parameter optimized machine learning implementations for multivariate
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signal / transformed recovery.

Original signal

Signal processing algorithms and software - T

for audio, imagery, video. Microphone and

antenna array applications.

noise / blur image reconstruction.
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Background
Postdoc (CNRS). Investigation of optimization based seismic inversion schemes for large data sizes on limited hardware. Developed
projection and splitting methods. MPI implementation.
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Postdoc (CU Boulder). Investigated randomized algorithms for obtaining low rank fnatrix factorizations (e.g. SVD, ID, CUR). Implemented

RSVDPACK package. Instructor, N. Wiener Assistant Prof. (Tufts). Statistics, HPC.
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Research / Sr. Scientist (Intelligent Automation, Inc.). Filed proposals and white papers to DOD/DOT/DOE. PI on different topics including
data compression / multi-channel systems / waveform formation with antenna arrays. Contributor to projects on PTSD detection, aircraft
trajectory analysis, interceptor models, multi-fidelity simulations, traffic management, etc.

Research Scientist (Intel Corp.). Network data collector, analyzer, anomaly detector. Multivariate time series predictors, sorting,
compression.



Compressive sensing and sparsity constrained opt 7&

Seek most efficient representation in some basis.
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(1) and (II) equivalent under some conditions on A. (I) is a tractable problem. Much interest in
minimization of \ell 1 penalized functional.

Simple iterative schemes depend on weighing factors
and thresholding. BLAS 2/3 parallelization potential.
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Approximation / projection techniques for large data sizes

Wavelet thresholding and low rank projection methods.
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Mz~ AWTz and MTy~(AWT)Ty=wATy,

Az~ MW Tz and Aly~w1mly.

Projectors from first k eigenvectors.
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Applications to image enhancement

Wavelet denoising

Bilateral

Wavelet denoising

Original (more) TV (more) Bilateral in YChCr colorspace

WL (Thr(Wx)) v = zi,-\/|1i+1,,-—1i,j *+ Yo = 1|

Image upscaling via CS + residual correction

Vertical detail
vertical detail

CS based (e.g. matrix

glx,y) =h(x,y)* f(x,y) + n(x,y), completion) pixel

reconstruction
G(u,v) =Hv)F(u,v)+ N(u,v)
D(X):=UD.(2)V*
Fu,v) =W v)6(u,v) 1 .
A~ argmin | X - Az +M|1X ..
W, v) = b ) winimize | X].
|H(u, v)I? + K(u,v) subject to Xy = My, (i,5) € 9,

Super-resolution

Diagonal d
PR b B

_ . 2 :
X = argmin, {Z{k=1}|IDkaFkX — Y[, + 2AR(X)

,,,,, 2

Input frames

Measurement

8 5, s Gradient based reconstruction of ghae Tt

ﬁé WNHWJp.d missing pixels [Stankovic et al]. oo

£ 2....,:\."‘ -,-a-&---w—-r»_,f-— o~ L0 0 for missing samples, n € N, min | X,[, Research combinations of transform /
g Bow o= o w Xy (1) = . thresholding, optimization based and
°”’ﬂfvz‘hﬂ?’“¢r‘ﬁ‘“ﬂﬁw&v“ﬂ- ' ¥(n) for available samples, n € Ny subject to ™ (1) = x(n) forne N,  machine learning methods.
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Randomized algorithms

Choose large N, A =

>N = 1e5; x =randn(N,1); y = randn(N,1);
> x = x/norm(X); y = y/norm(y);

> abs(x"*y)

ans = 0.0033332

> O(mnk) vs O(mn”"2) ~

Sample range of A with k + p lin. indep. vectors, so that QQ*A ~ A.

o Draw an n x (k + p) Gaussian random matrix €.
Omega = randn(n,k+p)

o Form the m x (k + p) sample matrix Y = AQ.
Y = A x Omega ; ranY = ranA

o Form an m x (k + p) orthonormal matrix @ such that Y = QR.
[Q, R] = qr(Y) ;ran@ =ranA

o Form the (k + p) x n matrix Q" A.
B=0Q %A

o Compute the SVD of the smaller (k + p) x n matrix B: B = UXV*,

[Uhat, Sigma, V] = svd(B)

o Form the matrix U = QU.
U=Q * UThat ; QQ"A~ A

o Up=U(,1: k), X =%(1:k,1:k),Vie,=V(,1:k).

]

RUNTIMES of RSVDPACK vs PROPACK
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How to determine factorization rank adaptively based on tolerance? General form for different
factorizations, parallelizable block based hierarchical approach for large sizes.

IA—QB| <e=QB=0QQTA= QB~QUsSVT °
q

Instead of adding one vector at a time, add _
blocks at once. 0

function [Q, B] = randQB_pb(M, &.4.b),)

_ AT
= (Iy 00" )y range(Q) = span(range(Q) U y).
- HyT” QTQ = Ir+1'

= [Q, q]

Hierarchical parallel implementation:

(1) fori=1,2,3,...
(2) Q; = randn(n, b),). M
3) 0, = orth(MQ,)). M})
(4) forj=1:q M =1
(5) Q; = orth(M’ Q)). M,
(6) Qi = orth(M Q).
@) end for B,

, M(l} = 7By
(8) 0; = orth(Q; - 37} 0,07 0)) {32‘ Qb
9) B, = 0™
oo
(11) if || M|| < & then stop M~ |y 0 0: 0 l
(12)  end while 0 0 0 Oy
(13) SetQ=1[Q: --- Qiland B=[B] --- B[ ]".
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Many applications of low rank matrix / tensor factorizations ... e.g. complex SAR imagery

im = magd_sar .* exp (j *phased_sar)

, ., svds of magnitude matrix
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Sample SAR data from open Sandia set. Decay of data matrices (also common to other applications).

Rank-k svd gives best error bound, but ID, CUR useful for applications: A~ CV', where C=A(,J(1:k), V'= [[k Tz] P!
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Can build multiple representations (SVD, ID, CUR) efficiently with randomized schemes.




Some recent project directions..

() Machine Learning
Classification and regression problems. Parameter optimizations. Boosting and ensemble
schemes. Data imputation and correction strategies. Anomaly detection.

(I) Antenna array systems
How to construct a ‘fancy’ signal in the far field using multiple transmitters in place of single large /
expensive transmitter.

(I) PTSD detection
How to process audio data from medical interview, segment out the patient voice, extract relevant
features, and assign likelihood score of emotion state or PTSD likelihood.

(111) Data compression for heterogeneous bundles, audio, and image sequences.
Heterogeneous data. Sets of similar signals (e.g. microphone arrays).

(IV) Gaussian process regression for multi-fidelity data applications.

(V) Accelerated implementation. (V1) Network data analysis. (VII) Multivariate time series.



Machine learning

Implementations for several classification and regression problems with varying data sizes and quality (time
series, text, audio, and imagery data applications).

Using autoencoders to supplement handcrafted feature sets by

t-SNE Vi lization of Handcrafted Features
20
° A " . . . .
o S s o 5 considering low dimensional data or feature set representation.
. s %000 o 50",
* 2 et o o 2 %o autoencoder = Model(inputs=input_layer, outputs=decoded)
o e ° encoder = Model(inputs=input_layer, outputs=encoded)
g e &5 eje ° = 02 S autoencoder.compile(optimizer='adam', loss='mean squared error')
g o SEer § 0 Ot history = autoencoder.fit(X_ scaled, X scaled,
g ° o . g ©e® o epochs=250,
S 00 & s s o ® e batch size=16,
g @0 Joit H @ oo shuffle=True,
-10 KA & g Ll validation split=0.2,
o & e % gis verbose=1)
Bieet ot -5 o
7Y - : e o ° % :! : i 3 . encoded_features = encoder.predict(X_scaled)
L - e® e .. ..
° 0o 0% ) ) . Missing Values Before KNN Imputation
e 5 3 e £y Y e = 5 T - = Learning Curve for XGBoost (Latitude Prediction) 10
t-SNE Component 1 -SNE Component 1

Feature set projections. "

gs
£ 53
param_grid = { N z
‘n_estinators': 500], # Number o 3 -
th of each tree Distribution of max_depth Zos 5 ..
C == Gestvae 2 -
oe 33
o3 : oz
02 23
85 o i -00
30 35 a0 45 se otz obi obs ome 0o o B E) r ES : oy
ot earning_rate Waining Set size

Distribution of colsample_bytree Distribution of min_child_weight

= Learning curve for under and
over fitting detection.

Missing data analysis

and imputation.

Parameter tuning via cross
validation or Bayesian methods
allows for optimized model el e o e

Diatrisulloniafiganiia Dlstribitioniof iagplaiabda Anomaly Score Distribution PS2 Stations (Outliers Highlighted)
perfo rm an Ce . i T == sestvaue 20 T 4.0 == Outlier Threshold (-0.000) XX o PS2Inliers
= B hliers 0 1 ° ° X PS2 Outliers
3 g 35 =3 outiiers !
P " £ =) = s 3.0 ; 23
Top 20 Most Important Features for Latitude, Longitude, and Altitude 5
Dauu 0.05 0.10 015 0.20 © 25
0020 o Atitude o g L
220 4 s °
& Bl o
3 °
Feature importance analysis, iy e o i
. -2 ° ® ° °
mapping to augmented feature e §
matrix columns. = .
-64 -62 -60 -58 -56 -54 -52 -50 -48
Longitude

Anomaly identification and

scoring. Cluster analysis.



> Parallel data compression for heterogeneous data.
Achieving good compression ratios by clustering. Sets of similar signals (e.g. microphone arrays).
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> Audio analysis / Antenna array systems / Video / etc.
How to process audio data from medical interview, segment out the
patient voice, extract relevant features, and assign likelihood score
of emotion state or medical indicators.

How to construct a signal in the far field using multiple transmitters?




phase shifter

Antenna array systems

Transmitter

Project considered antennas which
can emit compactly supported
wavelets. (non-trivial hardware
Implementation).
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superimposed signal at receiver: ~ Time delayed signals, convolved o' SPACING WAVEFORMS with $2,54,56.58

with antenna filter and propagation .
fa:x.(b;t — t;) x h;] * c; : :
E‘[a‘xl(b‘t ty) * hy] = c; term (numerically determined). :

FDTD modeling for
the environment. oL alln allnalln
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Portion of reference signal Portion of reference signal

-5
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4 6 ] 10 12 14 16
Time (s) 107

Time (s) = 10

Use regularization and coordinate descent scheme to
determine weighing factors and time delays.

L curve with IRLS I1-min L curve with IRLS I1-min

1 x. 8 1‘0 '_.2 1‘4 _I6 2 4 [ a 10 12 4 16
Time (s) 0% Time (s) <10

Desired reference signal at given

window level.
wi(t1.61) .. wu(ti,0n) | [ fu(t1)
w1 (tm.: 51) ce ﬁ".‘q,(tm.: 571) Qn, fk(tm)

n
fi(D) ~ Z{' K st+Siy ()
i=

Time delayed signal via linear

St (1) operator.

Can be solved as a regularized least

squares problem + outer opt loop for
remaining parameters.

mjn“Ax - b||i +Ap(x), @(x) = ||x||z

(ATS A + ADEDy )x = ATSb with iteration
dependent diagonal matrices Sy, D,..



Application: emotion / PTSD detection from audio interviews.

coeffs cad : Winw(cad)

Input: unsegmented audio interview, output: condition assessment score

Input audio can be decomposed into approximation and scaling o ity _ |
coefficients using high / low pass filters and downsampling. - e ) iy
Dl

Per scale 4 fold CV results for 39-39 set .
0.8 \ \ \ T T T \ i WWM SR TAT PR EBE TR
F-score '

0.7 -

0.6

05 T _original coeffs cd2 N Winwv{ed2)

04

: I P

Fl score

0.1

orig wlap wldl w2ap w2dl w3ap w3dl wdap wddl coeffs cd3 Winvicd3)

For original signal x, compute multi-level Wavelet ‘

X Original waveform e v
transform: coeffs cdd. Winv(cd4)

a5, = Wi_l[OF w,] Coarse - Collect approximation and detail coefficients. -

Approximation -~  Apply inverse transform to obtain approximation and
ds, = W; ' [wg4; 0] Fine Details - Repeat for 4 different bases (sharp and smooth). L I

scale

Different representations give different performance.

high level details.



We extract ~45 features per set, corresponding to spectral (e.g. MFCC), audio (e.g. tempo), and time series

(e.g. mean auto-correlation) statistics.
LibRosa, Aubio libraries

Algorithms (Java Weka, Scikit, TF) : Tree-based methods, LSTM (with all 9 feature sets in megatensor)

We obtain probabilities for class_0 and class_1
with each algorithm j=1,..,M and feature set
k=1,..,9:

avg accuracy

avg accuracy

for features from i in train_set:

seq = [np.array(unt_rows[i]), np.array(wavlap_rows[i]),...
np.array(wavadl_rows[i])]

data.append(seq)

Xnew = np.zeros((num_files,nsets,nfeatures));

for i 1in (0,num_files):
for j 1in (0,nsets):
orig sig haar app haar detail db4 app db4 detail X_trlil[j][:] = datali][j];
= g, g, 8, 8.
4 I R R B P(C_0|A_j,S k), P(C_1|A_j, S_K)
81 8 8 81 81 Use an ensemble scheme, with PCIA. S
o o o (=] o . ] - -
| w (G| )/ 2w k1)
1 ¥ ¥ 2 ? weighted mean. 2 Uk} LI 2k {.k}
& & & &1 ]
= = . = = = Results for 13-13 set Results for 39-39 set
class number class number class number class number class number 25 F ! original - ! L T original _—
outlier-rem B3 70 [ outlier-rem E===
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Application: Data compression

Increasing adoption of high resolution content (e.qg. 4K, high fidelity auido) various big data applications,
effective parallel compression algorithms are becoming increasingly important. Both lossless and lossy
compression are of interest (e.g. for text documents, where loss of information is not acceptable and for

audio and image data where some losses are often plausible).

Lossy compression based on transform / thresholding schemes for small coefficients. Can use e.qg.

CDF 9-7 wavelets and firm thresholding. Idea based on relation:

S = M/i{_l}(Thr(W,;S))
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Lossless compression based on reducing alphabet size and encoding frequently occurring symbols
with fewer bits. Needed for e.g. text/numerical data, when loss of information is not acceptable.

Original Compressed Restored

Critically, one must seek to reduce
data entropy to improve Max when py = =py = n - H =log,(n)
compression performance.

H(pl pn ) = _Z F',' lgg?ﬁ pa'

H(A,B)=—p, log, p» —ps log, py = H(A,B)=—p,log, p, — pylog, py =

= —0.8log,0.8—0.2log, 0.2 =0.7219

=—0.5log,05-0.5log,05=1

Burrows-Wheeler transform based compression. ——»BWT— MTF—— EC ——




——BWT— MTF—— EC ——

BWT rearranges input to reveal patterns,
MTF/RLE move common symbols to front,
compress sequences of identical digits, EC
(Huffman or Arithmetic coding), encodes
remaining data in fewer bits.

BWT typically needs to be performed over small
chunks due to expensive string sorting. Can use
suffix arrays and take advantage of triangular
structure .. towards O(n log n).

SA[i]>0 ? BWT[i]=T[SA[i]-1] : $

general purpose compressors (bzip2,
lbzip2)

Need index permutation information from the sort.
Developed O(n) counting sort with permutation

information.

count = array of k+1 zeros
for x in input do
count[key(x)] += 1

total = 0
for 1t in 0, 1, ... k do
count[1], total = total, count[i] + total

output = array of the same length as input
for x in input do
output[count[key(x)]] = x
count[key(x)] += 1

return output

SBANANA 18 1 banana$ 7 % 12 3 4 5 6 7
ASBANAN 2 AS 2 anana$ 6 a$ X B A N A N A %
ANASBAN 3 ANAS 3 nana$ Sorting 4 ana$ M S
ANANASE 4 ANANAS 4 anay  --------o- > 2 ananas S 7 6 4 2 1 5 3
BANANAS 5 BANANAS 5 na$ alphabetically 1 banana$

6 a$ 5 na$
s me O S hanas BWTOO (AW N 8 s A A
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Move to front transform and Entropy coding: Huffman or Arithmetic coding.

Iteration Index sequence Symbol list

mississippi 12 abcdefghijklmnopqrstuvwxyz
mississippi 12,9 mabcdefghijklnopqrstuvwxyz
mississippi 12,9,19 imabcdefghjklnopqrstuvwxyz
mississippi 12,9,19,0 simabcdefghjklnopgrtuvwxyz

MTF is recency ranking scheme from symbol dictionary,

converts to integer set.

Arithmetic coding represent input by a small interval (or some
number within that interval). Better ratio than Huffman trees

for heterogeneous inputs.

-
s

-
=

[0.03512,
[0.035124, 0.035128
[0.0351272,  0.0351280
[0.03512764, 0.03512800
[0.035123748, 0.035127820
[0.0351239912, 0.0351239056

1.0
0.1
0.05
0.036

encode_symbol(symbol,cum_freq)
range = high - low
high =low + range*cum_freq[symbol-1]

low =low + range*cum_freq[symbol]

decode_symbol(encoded_val.cum_freq)

# find symbol such that the following is satisfied

cum_freq[symbol] <= (encoded_val - low)/(high - low) < cum_freq[symbol-1]
range = high - low

high = low + range*cum_freq[symbol-1] ; low = low + range*cum_freq[symbol]

return x[symbol]

Best done on larger chunks. Relatively slow. Need cumulative frequency count of
encountered symbols; best done adaptively.

Timing breakdowns for Burrows-Wheeler compression (file 1)

Sizes with Burrows-Wheeler compression (file 1)

)

)

)

)

0.0352 )
0.03516 )
)

)

)

)

)

BWT (4.4) .
MTF (0.72) Emmm
AC (1.78) =21

size (MB)
[e]
1

Al . - |
0

orig BWCwHuff BWCwWAC




Implemented enhancements for parallel compressor:

1) Subdivision into mega-blocks via symbol
distribution clustering.

file size (MB)

W N -

z

Comparison of Sizes

L

L] mb 1
]

e S
B -
]

]

T mb M
o

U

o 50 100

5 02 NUM .

01 '

250 00 u i
o 50 100 150 200 250 :

02

01

o

©.000

2) O(n) counting sort with indexing permutation output.

struct val inds

T
Size

{
int val;
int num_inds;
int *inds;
b
bananasale ale
ananasale ananasale
nanasale anasale
anasale asale
| nasale — bananasale
| asale e
sale le
i ale hanasale
le nasale
e sale

unshuffledc shuffledc  smallblockc

magablkc splitmgablkc

unshuffled comp, shuffled comp, block comp, cluster comp, split+cluster comp

hefore sort:

5 4 2 1 1 3 4 12
after sort:

1 1 2 3 4 4 5 10
inds after sort:

3 4 2 5 1 6 06 8

10

nbucket = 1, cur = (10)

nbucket = 2, cur = ananasale (97)
nbucket = 2, cur = anasale (97)
nbucket = 2, cur = asale (97)
nbucket = 2, cur = ale (97)
nbucket = 3, cur = bananasale (98)
nbucket = 4, cur = e (101)
nbucket = 5, cur = le (108)
nbucket = 6, cur = nanasale (110)
nbucket = 6, cur = nasale (110)
nbucket = 7, cur = sale (115)



Application (similar signals): microphone array, ecq signals

«~ SINGULAR VALUE DECAY

- - " SCALED AND MAVGD ECG SIGNALS : 1 I I E
'\ Sl e l | ' {.___ ]
. ) '| l s 100 10 e @m0 e 30

o
o

The ID can be constructed from the partial pivoted QR

_ factorization.
.. k r—k "
k S
For remaining data, sorted abs values of transformed AGI) = [0 0 ]x [ Sl ] 051+ 05,
coefficients are exponentially decaying. rok 2
SORTED WT (CDF97,4L) COEFFICIENTS k n-k
AC ) = O [511 512] + Q> [0 522] =m [ 0151 OQ1Si2+S» ]
- PAIRWISE CORRELATION EDEIEIEHT
e . : 2 181 = [Q1511 lelz] = OiSulle S;/Si2) = Clk T,
1 - A~CV', where C=ACG.J1:k), VI =[L T|P
y . - Applied on matrix transpose, yields a subset of the
rows.
0w mome o me® This allows only a portion of the most distinct channel
o I data to be retained. Can then use high correlation

sig ref = log(E(ind ,:));
p = polyfit(sig ref ,sig new ,2);
yfit = p(l) = sig_ref.”2 + p(2) = sig_ref + p(3);

modeling for remaining data.



Data: Floating point data from multiple channels. Tolerance and pillar block parameters (€23, L), Wavelet ACTUAL and FITTED slgnals

transform, and thresholding function. =
Result: Compressed representation of data for all channels. .
Insert floating point data into matrix A, one channel per row.
Perform ID decomposition on the transpose of the matrix, AT ~ A(J,(1 : k), :)V with rank chosen per €| tolerance. 0
Set C = A(J, (1 : k), :) to be the subset of retained channels.
Form matrices M, Myn, Mgy from C. 02
for j=1,...,kdo
Compute w; = trans form(C(J, :)) i
[v;, I;] = sort(abs(w;), ‘d")
Store permutation inds /; from sort and signs of w;({;) in Mpym(J, 1) and Mgen(J, :). %0 e a0 o0 s swo w0 7aoo
Set M(j,:) = Thr(v;) per €.
end
Set Mg = 1e6,i = 0. Initialize E to hold subset (the pillars) of M and F to hold linear fitting information. o . OUTP“IT SIZES
while Mg > & do size ==
AddCGE+1,...,i+L,:))t0E. 50 -
for j=i+L+1,...,kdo i |-
Compute low order polynomial fit model between log(M(}, :)) and each of the saved channels log(E(i, :)). @
Record scaling factor s;, modeling coefficients a, b and index to pillar model corresponding to smallest g T
error against E(i,:) in F(j,:) = [a, b, si, 1]. " a0l
Record reconstruction error as e;. ol
end
Let Mg = max(e;),i =i+ L. ° ORIG ID ID-+SIMCOMP
end APPROACH
Lossless compress saved floating point data E, fitting coeflicient set ', as well as the integer and bit sign matrices
Mupym and Mg, and ID matrix V.
. ORIG WAV COEFFS AND REC FROM PILLAR e ORIG SIGNAL AND REC FROM PILLAR b ORIG WAV COEFFS AND REC FROM PILLAR b ORIG SIGNAL AND REC FROM PILLAR
n1s il n1s i 015 e n1s id
osk 05 n MNd 1 .05 n b .05 - Mo it
u.:] \ Ir;]_ "!IH | U o \\“/'—\M/V\nl A ,ﬂu:ﬁ. fl |';I Illl.- .H ﬂl "I |h| 1 i o |— [ I.. IH M, i - r‘\ /—\ ._-'/ : _,': Vi I'\..n V)
0.05 's' : n 0.05 5 Uﬁh L I|-|I u H i lfl 'Iu ? oost 'll N I -0.05 b ) ‘-"\." I'.'III Vo II' |l
0.1 0.1 1 .I I 0.1 ! ‘ 0.1 i Al
a5 s o5 w15 f
-D'Z{J 500 1000 1500 2000 -D'Z{J S00 1000 1500 2000 -D.Z_D 500 1000 1500 2000 -ﬂ-z':) 500 1000 1500 2000



Analysis and compression of SAR data

log(svds) of magnitude matrix log(svds) of phase matrix
0 0

AP (AP)(:,lzk)

Algorithm 1: SAR BLOCK PNG COMPRESS
Input: A set C = {1, Is,...,I} of SAR images in PNG (or
similar) format, block size | x | and adaptive tolerance € or
rank k. '
Output: A compressed representation consisting of losslessly
compressed ID components and scaling factors.
1 Break the image pixel set in [ x [ blocks for a total of N, blocks {b;}
representing the set.

Output Size per PSNR=25

S5 5 . Size e
Initialize transform matrix

T; = round (dctmtx[!]/ min(min(dctmtx[l]))).
Apply transform and subtract smallest number from each block. S @
for i1 < 1 to N, do
bt; = Tib; |
muv; = min(min(bt;)) B
bti = bti — muv;
M = [M; bt;] R

Decompose matrix of transformed blocks M ~ M(:, I(1: k))Vt via
pivoted QR factorization to tolerance level e.

N

20

15

’éa g
§
Size (MB)

10 +

o N o »ok W

©

o . . ~F PNG Mi Mi2 PG IntTr ID1
10 Lossless compress remaining ID and scaling factors. - = s neirans



Multi-fidelity with Gaussian Processes

Goal is to comine data with multiple fidelities (from simulations, testing) to build
databases for aerodynamic modeling. Using Gaussian process regression (an
interpolation method that pre-supposes a multi-normial Normal distribution on the
target data).

jibit i
//)‘ GPR Mean J 1 T {_ 1}
|~ i p(x|u, K) = 1/sqrt{det(2mK)} exp [— > (x—w)'KvbY(x— M)]
08 I su2
ST —— 2 4 ) 6 8 10 12 14 [y{tBSt}; y{train}] ~ N([ul, ”2], [2{11}, 2{1'2}; 2{21}2{22})
=] = ) i
. Vieests| Yierainy~N (“1 + 2{12}2§221}}(y{tmm} - uz),zm}zé;}}z{m).
0% M _ B T
Wi o Yitesty| Yitrainy~ N[( Kisy (K + ant 1}y{train}’ Kiss) — Ks(K + ANt 1}Ks )]
actual train test
P s N Nf ) oy o
. / Joe




¥ true, predicted

Optimized Gaussian Processes

Different covariance ‘kernels’ with associated hyperparameters appropriate per different noise settings.

wetiuv)a) Se abs(v-u)

-
08 -
07 &
08 §
.
z DS }
04 F
o3}
[ §1 ~ T ——— .
: - vi"’“*rfk_--‘rﬁs - d
[ Lj] = a* b*(x1[i ] -c)™d); {a,b,c,d he h
e.g. Sigmali,j] = a*exp(-b*(x1[i] — x2[j] -c)d); {a,b,c,d} are the hyperparameters.
for ( k in lincdescent iters ) {
# pick random num in 1-4 ra
2 e - SOt to_ GBE = round{runif (L, T;:4))}
s L & printf(">>>>>>>>>>>>>>>>>>>>>> iter = %d -> coord_to_opt = %d\n", k, coord_to_opt);
° %0 svalsl = c();
w © ™ 0° svals2 = c();
- 5 1s3 = c();
g;"::j . gf‘«?%g;.% i;glikevals =cl);

/ o vt 1o o) ) < Developed optimized GP code performs several level of
1 (coord_to_opt == 1){ optimization to pick the optimal kernel and tune parameters

a = as[vind]; b = bsave; ¢ = csave; d = dsave;
{

. § Poue it Gt rooptemal for that kernel based on the train data. Basic approach

0
|

¥ true, predicted
0

02 28 5 g } else if (coord to opt == 3){ b d d H d d d d

) y e Ceaies b bomval o celvARl sl ased on randomized coordinate descent method.
w | 7 ? & } else if (coord to_opt == 4){
&% o a = asave; b = bsave; ¢ = csave; d = ds[vind];
° - }
g
& o printf(“test kernel %d\n", k); . ## Function to evaluate Log-Likelihood
a . : T T T gp = gp_solve( x.train_nt , y.noisy nt , x.test_nt , kernels[[opt_kernel]] , sigma2e, a, b, ¢, d ) get_ log likelihood = function( x.train , y.train , x.pred , kernel , sigma2e = 0, a, b, c, d ) {
5 0 5 -xx = kernel(x.train,x.train,a,b,c)
& 0 5 # compute var sum Hine = dim(k.xx
o xtest var_sums = colleans (gp[['var']]); Koxx = koxx + dxpatrix(runif(dims[1]*dins[2]),dins(1],dims[2]);
sval um(var_suns) ;

Vinv = solve(k.xx + sigmaze * diag(1, ncol(k.xx)))
printf(size y.train:\n");
print(svall); print(dim(y.train))

Optimization of kernel type and parameters svalsl = c(svalsl,svall); printf(“size Vinvi\n);

print(dim(Vinv))

H . . inds = which(x.test>-5 & x.test<5) tyt = t(y.train);
Often yleIdS better predlctlon results Var_suns2 = abs(var_suns[inds]); printf("size tyt:\n");
" print("sum of variances 2:"); print(dim(tyt))
sval2 = sum(var_sums2) val = -0.5%t(y.train)s*sVinve*s(y.train) - 0.5*log(norm(k.xx)) - length(y.train)/2*log(2*pi);
print(sval2) return (val);
svals2 = c(svals2,sval2); }

diffs = gp[['mu']] - ytest true; . . . . .
girts = abs(airrslingsl); Evaluate model fit based on log likelihood and similar
svals3 = c(svals3,sval3);

metrics.
loglikeval = get log likelihood( x.train nt , y.noisy nt , x.test nt , kernels[[opt_kernel]] , sigma2e = 0, a, b, ¢,

Toglikevals = c(loglikevals, loglikeval);
}



Traffic routing system with weighted graph

[39.60907,-75.74383]

[39.70642,-75.60651] [

eltime data processing 0 of 375 processing 50 of 375 processing 100 of 375 processing 150 of 375 processing 200
1, lon2 = -75.743830,-75.587240 Converting multi-graph and extracting top path by min weight

1=125, sval (hr) = 0.48626611326122204
DE-896, Newark, DE

301-399 Southern Rd, Wilmington, DE 1

Add destination

Leave now ~ OPTIONS
2] Senddirections to your phone

fm  via Capitol Trail and Kirkwood Hwy 25 min

Best route 11.1 miles
DETAILS

= viaDE-273and 95N 23 min

13.6 miles

fm vial-95N 23 min
ETT (hr): 043

M = nx.Graph();

for u,v,data in G.edges(data=

w = data[ 1
if M.has_edge(u,v):
Mu][v1[

A

M.add_edge (u,v,weight=w);

] += W

in data else

paths_unw_shortest = nx.shortest_simple_paths(M, source=orig_node, target=dest_node);

6% ¥ @ ® &)
g Arindel 301:399'Southern Road

Strickersville Clay.Creek . 99°Southern Roa @

/State Park Pike Creek { ,

& 25 min | Magstiliion

I 111 miles
Run Valley. otanton, (e FNE Ao g 1957
Natural Area {95/ .
& West Meadow N M
B &
Wilmington
e, Manor
3 & 23 min |\ Brookbend e
136 miles ew Castle
= Airport
Brookside
H Melanie @ New
5 Winding | 3
Brook Village
| & 23min |
B 156miles |

7 ¥ Bayview
(1 . Manor
(R Bear \Monterey/
satelite Google  Farms

Weighted graph based
routing approach using
near real time road speed
data (Delaware DOT).



Accelerated implementation

Goal is to accelerate critical sub-parts of algorithmic implementation to enable application to bigger problem sizes
and for faster parameter optimization.

// launch threads, one per byte array
pthread t threadIds[4];

// CUDA exp kernel myargs = (struct arg *)malloc(4*sizeof(struct arg)); //array of structs, one per byte array

global  void kfunc_exp_kernel(double *x1, double *x2, double *Sigma,

const int M, for(nb=0; nb<4; nb++){
const int N, myargs[nb].byte num = nb+1;
const double a, const double b, const double c) myargs[nb].byte arr = (unsigned char*)malloc(nints in file * sizeof(unsigned char));
{ ' ' if(nb == 0){memcpy(myargs[nb].byte arr, barrl, nints in file);} // or set addr
A ) ) ) if(nb == 1){memcpy(myargs[nb].byte arr, barr2, nints in file);}
nt 1= threadIdx.x + blockIdx.x f blockD}m.x, if(nb == 2){memcpy(myargs[nb].byte arr, barr3, nints in file);}
int j = threadIdx.y + blockIdx.y * blockDim.y; if(nb == 3){memcpy(myargs[nb].byte arr, barr4, nints_in file);}
if(i<M && j<N){ ret = pthread create( &threadIds[nb], NULL, processByteArray, (void *)(&myargs[nbl))
Sigmalj*M+i] = a*exp(-b*pow(fabs(x1[i]-x2[j]),c)); printf("after calling pthread create with id = %lu..\n", threadIds[nb]);
if(ret !'= 0){
ieturn- printf( "Error creating thread %lu\n", threadIds[nb] )
' }
} }
void get idct(double **DCTMatrix, int M, int N){ auikemedel. = Pm-aut%arima(zigi;aéﬂ
int 1,]; start:qzl:
#pragma omp for num threads(4) collapse(2) test="adf",
for (i =0; i <M; i++) { seasonal=False,
for (j =0; j<N; j++) { trace=True)
if (i==0){ ndays ahead = 14;
DCTMatrix[j1[i] = (double)(1.0/sqrt((double)N)); Gy e = tséata.values;
pelsel . ] tsdata_preds = automodel.predict(ndays_ahead);
DCTMatrix[j][i] = (double)sqrt(2.0/(double)N)*cos((2*j+1)*i*M PI/(2.0*N)); tsdata combined = np.concatenate((tsdata vals,tsdata preds));
} date list = list(df['Datetime'].map(lambda ss:ss.date()))+list((pd.timedelta range(start='1
} day',periods=ndays ahead)+df.iloc[-1]['Datetime']).map(lambda ss:ss.date()))
}

Techniques with P-threads, OpenMP, CUDA, and time series based methods. Example: parallel BWT.



Network data analysis / anomaly detection

A web or device-based service takes several rounds of network data which can be collected with a simple Linux based device, and
text-based instructions, performs analysis on each uploaded data segment and creates outputs based on the user supplied
instructions. This service can detect anomalies and changes in usage on a network.

ing on 'ethe’ [ 5] local 10.
of 7 [ 1] Interva
shark:990) ©9:41:31.€13994 [Main MES ] -- Capture star[ 5] 0e-
(tshark:999) ©9:41:31.014099 [Main ME GE] -- File: "data/[ 5]
[ s1

iperf_stats_10_01 57.txt kernel 08_14_18.dat ploss_10_05_48.dat

_10.03. kernel 08_14_24.dat ploss_l
iperf stats 1004 3L.txt kernel 08_14 30.dat ploss

[ ID] Interval

I 3 bt receiver iperf stats_10.05
< < - :
g shark network sniffer... time = ©9_41_36 %
md: hark -i @ -a di tion:7 / d er
Node 1 nl Node 2 nl Node 3 e ncns cc?]’tisc;";‘:(. 2 209.136.175 port 64473 [l ik =]
> > nstats. ol etho 7 16.5 /K[ 10] Tmcerval Jitter ' Lost/Total Datagrans iperf stats_19.52 ernel_98_14_54.dat pl

my iface = eth®, time pd_secs = 7, ping_ip = 1@. , cur[ 5] e. o 5.371 ms 311/413 (7! = = i = 3

\\ - 00- s iperf_stats_19.52.37.txt kernel 88,1509, dat

5 o . 3 = = :

22 K: :37.955725 [Mai -- capt s K /
2 A e e | =g o £ Heterogeneous data bundle

Lost/Total Datagrams

ex lengtisswmai (89%) receiver| from Sma” analysis interval.

Sample three node setup with network
data collection and processing device.

S22 [ A ) 0 B (i) v | Reload Sideshow
Outa movemer er o = Number of e ot ket sz

= = Feature mining for characterizing heterogeneous data
bundles with statistics and autoencoder.

¢ . - "5 £ 60 o E3 o E3 . e " £ 000 1500 000 500 3500 1000 ping times

Based on the analysis, the N
processing node generates - il A Shan
e : graphical output for each ’
. batch and for a collective
multi-batch view, to allow
domain experts to view results = WL

for outlier batches.

Change point / breakpoint detection in time
e e a1 o sty 5o fittern Series d ata (eg | atency)_

3son




Time series analysis / prediction

Many available methods for interpolation and prediction. Libraries in Python and R. Examples are ARIMA based codes and machine

learning models (e.g. LSTM).

Residuals from ARIMA(1,1,0)

02
0.0
0.2
2000 2005 2010 2015
40-
0.1- 30-
oo b I L] s p
S O U L
10-
0.1~
: i’ i O T 1 i e —— 0
12 24 36 0.2 0.0 0.2
Lag residuals
US Monthly Natural Gas consumption
3000
K
£ 2500
E
3
& 2000
1500
2000 2005 2010 2015

Year

Time series with seasonal and trend patterns,

can be handled with decompositions.

Autoregression, differencing, moving average.
AR(p):Y; =c+ i #:Y, i +¢  Autoregression defines current value of
=1 series in terms of previous p lags.
Many  statistical choices for

q
MA@Q): Y, =p+e + ZG,-Q i Moving average captures patterns in modeling univarate series.

i=1 residual terms.

)4 q . =
ARMA(p,q):Yi=c+ > Vi + > bieri + € Combination of AR and
' ; ’ ZI: ' MA processes. ARIMA: A p-order AR process, d-

2 2 degrees of differencing, and g-order MA
ARTCApdg) =0+ ;‘j’iy"‘i T Z;eie“i T process. No simple extension to
multivariate case. Can use relatively

T : = - = simple VAR model instead:

24000

23800

Yiy=ai+ P Yi—1 + i1 You1 +e1y
Yy =ay+ Por Yig—1 + o1 You1 + €2y

23600

23400

23200

23000

Yig = a1+ B Yigmt + i Yosmt + BupYia + Boo o teyy
oo T oo Yy =ty + P Vit + Pri Yoget + BripYigr + PoaYopa + 63y

split = 1nt(0.8 * ten(x)) model = VAR(price_and_vol)
X_train, X val = X[:split], X[split:] model.information

y_train, y val = y[:split], y[split:] model.neqs

input_layer = Input(shape=(seq_length, X.shape[2])) model_fit model.fit()
stm_units = hp.Int('lstm units', min_value-=32, max_value=128, step-16) model_fit.coefs

Ustn out - LSTH(Lstm units, return sequences-True) (input_layer) : ; 8
Ustm_out = Dropout (hp.Float (‘dropout rate', min value=0.1, max value=0.5, step=0.1))(lstm out) pred = model_fit.forecast(model_fit.endog, steps=20)
Ustn_out = LSTH(Istn_units, return_sequences=True) (Lstm out)

Ustn out - Dropout (hp.Float('dropout_rate’, min value-0.1, max value-0.5, step-0.1))(Lstm out)

22800

X, y= crea(e sequenées(scaleé data, seq_length, steps ahead, feature index)
print(f"Shapes after creating sequences - X: {X.shape}, y: {y.shape}")

# Attention mechanisi
attention = Attention()([lstm_out, lstm_out])

enien eut = Concatenste (st out, attention) Limited statistical methods for multivariate case drive interest
flot'~ Flattent) (attencion outy~ 0 towards machine learning approaches (e.g. LSTM), but there are
e O g, o ameter
it fe i e e optimization, and mechanism for multi-step ahead prediction.

DIAONt o Forane {oteos ontad! ) (oiunle @ reliciing i Festure Tlon:rekurns) ir-sfeps.shead

model = Model (inputs=input layer, outputs=output)



Multivariate time series predictions
Summary: For multivariate cases (where there are two or more series; for instance, price and volume data in finance, or medical pulse
and oxygen saturation data), there are fewer available tools. Variance autoregressive models (VAR) are most common from statistics.

Close rce and EMA - BTCUSD

There is a need for more advanced and efficient methods for different applications. -~
from sklearnex import patch_sklearn ** e /xmrfxﬂﬁx/qu’Ta“
sisn - A /
patch_sklearn() s \\/V
11000 ‘ & y o y ) 7
L i g | .035e+02 1.300e+06] o o o~ o o o
oo W7 M .028e+02 1.100e+06] St O
‘-1‘. lﬁ o - I’JL i 100 »
. it ! . AN A 051e102 1.400¢+06] ) g
= .kL‘" I‘| R | o -] r [ .928e+02 1.100e+06] [Kd
) 7 g J'.mw A \ | .051e+02 1.400e+06] [
/ MAA 0o 5 ¥ ' .043e+02 1.500e+06] ] |8
o/ A e/ heh
= ﬁxﬁ ) ol = [[162.8 105.1 104.3] 7 B 5 : 2 k2 s :
v o L [185.1 104.3 106. ] ——
o g e e e o Multi-dim data -
bundles ’
Statistical (many steps ahead) and

machine learning based prediction
approaches (smaller number of
steps ahead, and re-train, re-run
approach).

BTC-USD (diff-logged data based prediction)

2023081819300 2024012320300

1000
000

loglikeval = get_log_likelihood( x.train , y.train ,
loglikevals = c(loglikevals,loglikeval);

}

if (coord_to_opt == 1){
asave = as[which.max(loglikevals)]; b = bsave; c
} else if (coord_to_opt == 2
asave; bsave = bs[which.max(loglikevals)]; c

} else if (coord_to_opt ==

a = asave; b = bsave; csave = cs[which.max(loglikevals)]; d

}

m !
i end descent

BTC-USD: 2023-08-16--19:30:00 - 2024-01-23--20:30:00
price prediction sma10 ml model1

43000

V 13

BTCUSD: 2023.08:16-19:30:00 - 2024.06-12-123000
price and wiap

csave; d = dsave;

csave; d = dsave;

dsave;

B B b D D B b b
AT T G T O
g g g g
Pu—

input_layer = Input(shape=(seq_length, X.shape[2]))
lstm units

Statistical in

%

s

a0 {
a0 =

000 ==+

50

o300

s

00

s

;
5y AT
o o

dicat(;rs andmAI-baéed interpretéﬁon.

BTC-USD: 2023-08-16-19:30:00 - 2024-06-12--12:30:00
recent prce with markers

emad (15415)
st 20415

e

hp.Int('lstm _units', min_value=32, max_value=128, step=16)

1 [ 6

BTC-USD: 2023-08-16--19:30:00 - 2024.06-12-12:30:00
normalzed volume

02309 00310 W31 W12 02401 00402 202403 02408 202405 202406
15 minintenvals pri

42000 lstm out = LSTM(lstm units, return_sequences=True) (input_ layer
1stm out = Dropout(hp.Float('dropout_rate', min_value=0.1, max_value=0.5, step=0.1))(1lstm_out)
lstm_out = LSTM(lstm_units, return_sequences=True) (lstm_out)

i 1stm_out = Dropout(hp.Float('dropout_rate', min_value=0.1, max_value=0.5, step=0.1))(1lstm_ out)

40000

39000

# Attention mechanism
attention = Attention()([lstm out, lstm_out])
attention out = Concatenate()([lstm out, attention])

LSTM with Bayesian parameter optimization.
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