
MATH 150-03 / COMP 150-07 Homework #1

September 24, 2016

1 Overview

The homework is due by 11:59 PM on Sunday, September 25th. All code is to be uploaded to the Tufts
cluster. Find your directory in /cluster/tufts/train/math150. Make a directory called submit. Inside
the submit directory make a directory called hw1. Please put all submission files there by the due date.
Please scan your responses to the non-programming parts (or type them up), and put in the folder with
the name hw1 written.pdf. Detailed instructions on how to access and use the cluster will be provided
next week.
With the exception of the last problem you are not using any libraries, just plain C code. All code can
be compiled on any Linux based system, using the GCC compiler. You do also need Matlab to test
the Matlab routines. I suggest you try one of the popular Linux distributions (Ubuntu, OpenSUSE,
Fedora, Mint) which should run without problem on a USB stick. There is a lot of documentation
on this online and I will present in detail how to do this in Monday’s workshop. Another option is
to install VirtualBox (a virtual machine) in Windows or on the Mac and to install Linux as a guest
operating system inside VirtualBox. This will allow you to use Linux inside a window on Windows or
Mac. I will go into more details on this on Monday also. (Note, you may need to enable virtualization
option in your computer’s bios for VirtualBox to run properly, if this is what you choose to use). At
the end of your development, you should upload and test all your code on the Tufts cluster. For Matlab
files, use the cluster module matlab/2015a (details to be provided). For the equation parser library use
https://www.gnu.org/software/libmatheval/. We will review it’s use with GCC in class.
In this homework, you will explore classical algorithms for solving linear systems of equations Ax = b,
where A ∈ Rn×n is a symmetric positive definite matrix. You will implement steepest descent and
conjugate gradient algorithms and compare their results. As I mentioned in class, these are very powerful
algorithms used widely in a variety of applications and not just for SPD matrices. When the general
system My = g is not under-determined one can use these algorithms by working with the normal
equation system MTMy = MT g.
Consider first the general descent method:

1 function x = general_descent_method(A,b,x0,TOL ,maxiters)

2 xn = x0;

3 rn = b - A*x0;

4 for i=1: maxiters

5 dn = [search direction vector ];

6 alpha = [arg min_(alpha) { J(xn + alpha*dn) }];

7 xn = xn + alpha*dn;

8 rn = b - A*xn;

9 if norm(rn) < TOL

10 break;

11 end

12 end

13 x = xn;

1

https://www.gnu.org/software/libmatheval/


14 end

For steepest descent, one uses J(x) = 1
2x

TAx−xT b and descent direction dn = −∇J(xn). Closely related
to steepest descent is the conjugate gradient (CG) scheme. Please see chapter 21 of the NLA book by
Ford for a description of both methods.
Finally, you will implement a numerical quadrature scheme: the composite trapezoidal rule. See details
on https://en.wikipedia.org/wiki/Numerical_integration. The code is similar to the composite
Simpson’s rule we have discussed.

2 Assignment details

A. (2 pts) State what it means for a matrix A ∈ Rn×n to be symmetric and positive definite (SPD).
What can be said about the eigenvalues of A?

B. (6 pts) Prove that for an SPD matrix A and vectors x and b satisfying Ax = b, the solution x is
the unique global minimizer of the functional J(x).

C. (6 pts) Prove that αn = arg minα J(xn + αdn) is given by αn = rn·dn
dn·Adn . (Consider the expression

d
dαJ(x+ αd)).

D. (6 pts) Prove that ∇xJ(x) = −r(x) where r(x) = b−Ax. Justify the steps in your calculation.

E. (5 pts) Implement the steepest descent algorithm in Matlab. Please supply the following function
for me to test:

1 function x = steepest_descent(A,b,x0,TOL ,maxiters)

You can use a test script I supply to test the function.

F. (30 pts) Implement the steepest descent algorithm in C. The program should compile into an exe-
cutable called steepdc. The program takes 1 command line argument which is the name of a text file
containing options. The text file, on a single line contains in comma separated format: the filename
for matrix A, the filename for vector b, the filename for vector x0, a floating point parameter TOL,
an integer maxiters, and finally, the filename for output vector x. These are all to be supplied on a
single line of the text file. There can be multiple spaces between the inputs following the comma.
Example:
A.bin, b.bin, x0.bin,1e-5, 100, x.bin
Scientific notation will be used for the tolerance parameter, as above. See the directory week3/hw1 test files
for examples. Note that for the matrices and vectors, they will be written by me in the following
binary file formats. For matrices, we will use the following column major format:

1 num_rows (int)

2 num_columns (int)

3 nnz (double)

4 ...

5 nnz (double)

For (column) vectors, the format is as follows:

1 num_rows (int)

2 nnz (double)

3 ...

4 nnz (double)

2

https://en.wikipedia.org/wiki/Numerical_integration


You will write the solution computed by your routine in the same format. You can use a test script
I supply (test sd1.m in hw1 test files folder) to test the function. Notice that the exact way I will
test is subject to change, but is roughly as in the script. I also supply an example of how I write
the matrices and vectors to disc. Notice that the routine will read the matrix, rhs vectors, and
initial guess from disk, and write the resulting solution vector to disk, all in binary format, to the
locations specified in the input file.

G. (20 pts) Implement the conjugate gradient (CG) scheme, with the same argument sequence as for
steepest descent above. Base your code of the implementation given by NLALIB cg.m function of
Ford’s Numerical Linear Algebra book. You can get the Matlab code for the algorithms in the book
from the website http://www.ford-book.info/. Notice that once you have done part (F), this
should be not too difficult as you should have all the necessary C functions in place. Your program
should compile into an executable conjgradc and take the same command line argument as steepest
descent. As with steepdc, the routine will read the matrix, rhs vectors, and initial guess from disk,
and write the resulting solution vector to disk, all in binary format, to the locations specified in the
input file.

H. (10 points) Write a program which runs the Matlab codes (the steepest descent code you wrote
above, the CG code from Ford’s book, and the pcg function native to Matlab). Compare the Matlab
runtimes with the C codes for systems Ax = b (with SPD A) of different sizes from n = 200 to
n = 2000 using maxiters = 100 (or your preferred number of iterations). Supply a plot comparing
the runtimes. Also, compare the convergence speeds of the steepest descent and CG routines for a
few different test matrices. (See the script make system1.m in hw1 test files folder on the cluster.
You can control the decay of singular values in the matrices you generate. Faster decay will result
in slower residual decrease). You can simply compare the rate of decrease of the residual vector
‖rn‖ with each routine, versus n. Supply one or more plots and summarize your findings in a few
sentences. You don’t need to supply any code you used here.

I. (15 points) Implement the composite Trapezoidal rule for numerical integration (see https://

en.wikipedia.org/wiki/Numerical_integration), but make one of the inputs a string function
to integrate. E.g. ‘x*exp(-x*x)’. Make use of the equation parser from https://www.gnu.org/

software/libmatheval/.

The resulting program should compile into a command called trapzc and take one command line
argument the name of a text file with options, as above. This text file will contain on one line: The
mathematical expression to integrate, lower bound floating point, upper bound floating point, and
number of intervals to use. For example:
x*exp(-x*x), 0, 100, 1000
The output should be a string with the integration result, such as:
The integral of x*exp(-x*x) from x=0 to x=100 is approximately 0.5.

3

http://www.ford-book.info/
https://en.wikipedia.org/wiki/Numerical_integration
https://en.wikipedia.org/wiki/Numerical_integration
https://www.gnu.org/software/libmatheval/
https://www.gnu.org/software/libmatheval/

	Overview
	Assignment details

