
MATH 150-03 / COMP 150-07 Homework #4

December 12, 2016

1 Overview

The homework is due by 11:59 PM on Thursday, December 22nd. All code is to be uploaded to the
Tufts cluster. Find your directory in /cluster/tufts/train/math150. Make a directory called submit.
Inside the submit directory make a directory called hw4. Please put all submission files there by the due
date. Please scan your responses to the non-programming parts (or type them up), and put in the folder
with the name hw4 written.pdf. Please supply clear instructions on how to compile your codes and any
necessary compile scripts and please include sample input files with which your code works. Please put
any figures with labels you produce in your pdf.
For this assignment, we will consider the problem of non-linear least squares fitting. This is a challenging
problem with respect to computation and is well suited for parallel architectures. You will implement
the solution in Matlab and on multi-core and GPU systems.

Let F (x, t) = x1 exp
(
− (t−x2)

2

(2x2
3)

)
+ x4 be the non-linear fitting model (only 4 parameters). Given a set

of points (ti, yi), the goal is do determine the constants x1, x2, x3, x4 which best fit the data in the least
squares sense, by iteratively minimizing the non-linear function g(x) = 1

2‖r(x)‖2:

x̄ = arg min
x

{
1

2
‖r(x)‖2

}
(1.1)

where ri(x) = yi − F (x, ti) and the standard Euclidean norm is used.

2 Assignment details

A. (10 pts) Compute the Jacobian and Hessian for the above model.

B. (5 pts) Describe how you would implement the iterative Gauss-Newton scheme for solving the
minimization problem (1.1) (with the simplification for the Hessian).

C. (15 pts) Implement in Matlab the Gauss-Newton method for this problem. Your program will be
called matlabgn.m . It will take two arguments (two text files) . The first text file will be called
data.txt . It will contain the number of data points and the data to fit in the following format (on
three lines):
N
t 1, t 2, . . . , t N
y 1, y 2, . . . , y N

The second file (initdata.txt) will contain the number of iterations to use and the initial guess for
values x1, x2, x3, x4:
maxiter

1

x 1, x 2, x 3, x 4

Your program will read in this information, run the Gauss-Newton scheme and then return the four
values x1, x2, x3, x4 which have been computed. You would also return the value of g(x) = 1

2‖r(x)‖2
evaluated using the model with the parameters you obtain. You can print these to stdout in human
readable format. Use a pivoted LU factorization for the linear solve step and step size search as
done in the sample Matlab scripts we have discussed.

Make a set of sample points (ex, pick a parameter vector x and some values of t and generate points
using F (x, t), possibly with some added noise). Run your code and make a plot of the data points
and the model fit. Please include this plot in your submission. Notice that your algorithm is likely
to diverge if your initial guess is not close to a vector x giving a relatively small residual value.
The step size optimization and use of pivoting in the factorization for the system solution help
improve performance, but the algorithm would need to be more complicated to perform better for
this nonlinear problem. If you are interested in this topic, look up trust region methods or speak
with me for more information.

D. (40 pts) Write a C code using Intel MKL library to solve the same problem as above, based on your
Matlab code. Notice that you will need to figure out how to do a system solve in MKL at each iter-
ation. Please use the pivoted LU factorization to do this. Also use a step size line search algorithm
to select a parameter α. See the example Matlab code provided which implements everything for a
simpler example. State and explain in your report all the steps of your scheme. For reference, see
e.g. https://en.wikipedia.org/wiki/Gauss%E2%80%93Newton_algorithm#Improved_versions

and the Numerical Linear Algebra textbook.

Your program should compile to an executable called fitwithmkl and take two command line ar-
guments (the path to the data file data.txt and the path to the initial condition file initdata.txt).
Where possible please use simple openMP constructs (e.g. for residual, Jacobian evaluations).

Your program will return the same information as the Matlab code.

E. (40 pts) Write a program in C to solve this problem on the GPU. Make use of the CUDA installation
and the latest CUSP library which is installed in /cluster/tufts/train/math150/svoron01/software.
Notice that the CUDA module installed on the cluster appears to have some issues. Please use
instead the CUDA 7.5 library which I have installed above. To use these programs on a GPU node
(e.g. salloc -N1 -c8 -t 150 –mem 20G -p gpu), you will require the following setup paths.sh script:

#!/bin/bash
export PATH=/cluster/tufts/train/math150/svoron01/software/cuda-7.5/bin:$PATH
export LD LIBRARY PATH=/cluster/tufts/train/math150/svoron01/software/cuda-7.5/lib64:
$LD LIBRARY PATH
which is given in that directory. When I test your code, I will try to run it against my cuda
installation first. If that fails, I will test against the system cuda install.

Your program will compile to the executable fitwithcuda and will take the same two command line
arguments as above. Where possible please use simple GPU kernels (e.g. for residual, Jacobian
evaluations). In particular, this means that you should make use of parallel function evaluations.
Feel free to make use of the example programs provided. Unlike the MKL code, no direct solves (i.e.
LU factorizations with pivoting) is necessary here. Please use instead one of the iterative algorithms
for obtaining a solution to a positive semidefinite system at each iteration and do implement a line
search strategy as before. Your program will return the same information as the Matlab code.

Information on the CUSP library and it’s available functions is available at http://cusplibrary.
github.io/. There is a number of examples for different functionality in
/cluster/tufts/train/math150/svoron01/software/cusp lib/cusplibrary-0.5.1 which you can compile
with the nvcc command. We will go over examples of this library in the class. Notice that for

2

https://en.wikipedia.org/wiki/Gauss%E2%80%93Newton_algorithm#Improved_versions
http://cusplibrary.github.io/
http://cusplibrary.github.io/

your C codes, with the same input parameters, the returned results should be very similar to those
returned by your Matlab code.

How does the runtime of your different codes compare for your sample inputs? Please describe in
your pdf.

F. (10 pts) Review of gradients and Jacobians. Let k(x) = ‖Ax−b‖42 for a matrix A which is m×n and
vector x which is n× 1. Compute the gradient of k(x). What are the dimensions of the gradient?
Next, suppose M is a symmetric n × n matrix and let h(x) = (xTMx)v + x where x is the same
vector as above and v is an n × 1 vector of all ones. What is the Jacobian of h(x)? What are its
dimensions? Please justify your calculations.

3

	Overview
	Assignment details

